• Chinese Optics Letters
  • Vol. 19, Issue 8, 083601 (2021)
Kiran Mujeeb1, Muhammad Faryad2, Akhlesh Lakhtakia3、*, and Julio V. Urbina4
Author Affiliations
  • 1Department of Electronics, Quaid-i-Azam University, Islamabad 45320, Pakistan
  • 2Department of Physics, Lahore University of Management Sciences, Lahore 54792, Pakistan
  • 3Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
  • 4Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
  • show less
    DOI: 10.3788/COL202119.083601 Cite this Article Set citation alerts
    Kiran Mujeeb, Muhammad Faryad, Akhlesh Lakhtakia, Julio V. Urbina. Surface-plasmonic sensor using a columnar thin film in the grating-coupled configuration [Invited][J]. Chinese Optics Letters, 2021, 19(8): 083601 Copy Citation Text show less
    References

    [1] J. A. Polo, T. G. Mackay, A. Lakhtakia. Electromagnetic Surface Waves: A Modern Perspective(2013).

    [2] S. A. Maier. Plasmonics: Fundamentals and Applications(2007).

    [3] J. Homola. Surface Plasmon Resonance Based Sensors(2006).

    [4] Y. Tang, X. Zeng. Surface plasmon resonance: an introduction to a surface spectroscopy technique. J. Chem. Edu., 87, 742(2010).

    [5] G. Flätgen, K. Krischer, G. Ertl. Spatio-temporal pattern formation during the reduction of peroxodisulfate in the bistable and oscillatory regime: a surface plasmon microscopy study. J. Electroanal. Chem., 409, 183(1996).

    [6] A. W. Peterson, M. Halter, A. Tona, A. L. Plant. High resolution surface plasmon resonance imaging for single cells. BMC Cell Biol., 15, 35(2014).

    [7] J. S. Sekhon, S. Verma. Plasmonics: the future wave of communication. Curr. Sci., 101, 484(2011).

    [8] R. Agrahari, A. Lakhtakia, P. K. Jain. Information transfer by near-infrared surface-plasmon-polariton waves on silver/silicon interfaces. Sci. Rep., 9, 12095(2019).

    [9] I. Abdulhalim, M. Zourob, A. Lakhtakia. Surface plasmon resonance for biosensing: a mini-review. Electromagnetics, 28, 214(2008).

    [10] A. M. Shrivastav, U. Cvelbar, I. Abdulhalim. “A comprehensive review on plasmonic-based biosensors used in viral diagnostics. Commun. Biol., 4, 70(2021).

    [11] R. H. Ritchie. Plasma losses by fast electrons in thin films. Phys. Rev., 106, 874(1957).

    [12] T. Turbadar. Complete absorption of light by thin metal films. Proc. Phys. Soc., 73, 40(1959).

    [13] E. Kretschmann, H. Raether. Radiative decay of nonradiative surface plasmons excited by light. Z. Naturforsch., 23, 2135(1968).

    [14] A. Otto. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys., 216, 398(1968).

    [15] G. I. Stegeman, R. F. Wallis, A. A. Maradudin. Excitation of surface polaritons by end-fire coupling. Opt. Lett., 8, 386(1983).

    [16] L. Liu, M. Faryad, A. S. Hall, G. D. Barber, S. Erten, T. E. Mallouk, A. Lakhtakia, T. S. Mayer. Experimental excitation of multiple surface-plasmon-polariton waves and waveguide modes in a one-dimensional photonic crystal atop a two-dimensional metal grating. J. Nanophoton., 9, 093593(2015).

    [17] G. Ruffato, F. Romanato. Grating-coupled surface plasmon resonance in conical mounting with polarization modulation. Opt. Lett., 37, 2718(2012).

    [18] F. Chiadini, V. Fiumara, A. Scaglione, A. Lakhtakia. Multiple excitations of a surface-plasmon-polariton wave guided by a columnar thin film deposited on a metal grating. Opt. Eng., 53, 127105(2014).

    [19] K. Mujeeb, M. Faryad, J. V. Urbina, A. Lakhtakia. Effect of orientation on excitation of surface-plasmon-polariton waves guided by a columnar thin film deposited on a metal grating. Opt. Eng., 59, 069801(2020).

    [20] J. Dostálek, J. Homola, M. Miler. Rich information format surface plasmon resonance biosensor based on array of diffraction gratings. Sens. Actuat. B: Chem., 107, 154(2005).

    [21] D. W. Unfricht, S. L. Colpitts, S. M. Fernandez, M. A. Lynes. Grating-coupled surface plasmon resonance: a cell and protein microarray platform. Proteomics, 5, 4432(2005).

    [22] F.-C. Chien, C.-Y. Lin, J.-N. Yih, K.-L. Lee, C.-W. Chang, P.-K. Wei, C.-C. Sun, S.-J. Chen. Coupled waveguide–surface plasmon resonance biosensor with subwavelength grating. Biosens. Bioelectron., 22, 2737(2007).

    [23] C. Thirstrup, W. Zong, M. Borre, H. Neff, H. C. Pedersen, G. Holzhueter. Diffractive optical coupling element for surface plasmon resonance sensors. Sens. Actuat. B: Chem., 100, 298(2004).

    [24] P. Adam, J. Dostálek, J. Homola. Multiple surface plasmon spectroscopy for study of biomolecular systems. Sens. Actuat. B: Chem., 113, 774(2006).

    [25] S. J. Elston, J. R. Sambles. Surface plasmon-polaritons on an anisotropic substrate. J. Mod. Opt., 37, 1895(1990).

    [26] M. Faryad, J. A. Polo, A. Lakhtakia. Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part IV: canonical problem. J. Nanophoton., 4, 043505(2010).

    [27] S. S. Jamaian, T. G. Mackay. On columnar thin films as platforms for surface-plasmonic-polaritonic optical sensing: higher-order considerations. Opt. Commun., 285, 5535(2012).

    [28] S. E. Swiontek, M. Faryad, A. Lakhtakia. Surface plasmonic polaritonic sensor using a dielectric columnar thin film. J. Nanophoton., 8, 083986(2014).

    [29] I. J. Hodgkinson, Q. h. Wu. Birefringent Thin Films and Polarizing Elements(1998).

    [30] D. M. Mattox. The Foundations of Vacuum Coating Technology(2003).

    [31] A. Lakhtakia, R. Messier. Sculptured Thin Films: Nanoengineered Morphology and Optics(2005).

    [32] T. G. Mackay, A. Lakhtakia. Determination of constitutive and morphological parameters of columnar thin films by inverse homogenization. J. Nanophoton., 4, 040201(2010).

    [33] M. G. Moharam, T. K. Gaylord. Rigorous coupled-wave analysis of metallic surface-relief gratings. J. Opt. Soc. Am. A, 3, 1780(1986).

    [34] M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A, 12, 1068(1995).

    [35] M. F. Iskander. Electromagnetic Fields and Waves(2013).

    [36] L. Ward. The Optical Constants of Bulk Materials and Films(2000).

    [37] A. Lakhtakia. Selected Papers on Linear Optical Composite Materials(1996).

    [38] T. G. Mackay, A. Lakhtakia. Modern Analytical Electromagnetic Homogenization with Mathematica®(2020).

    [39] I. Hodgkinson, Q. H. Wu, J. Hazel. Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide. Appl. Opt., 37, 2653(1998).

    [40] M. A. Motyka, A. Lakhtakia. Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. J. Nanophoton., 2, 021910(2008).

    [41] T. G. Mackay. On the identification of surface waves in numerical studies. Plasmonics, 14, 1(2019).

    [42] T. Khaleque, R. Magnusson. Light management through guided-mode resonances in thin-film silicon solar cells. J. Nanophoton., 8, 083995(2014).

    [43] J. A. Polo, S. R. Nelatury, A. Lakhtakia. Propagation of surface waves at the planar interface of a columnar thin film and an isotropic substrate. J. Nanophoton., 1, 013501(2007).

    [44] V. L. Zaguskin. Handbook of Numerical Methods for the Solution of Algebraic and Transcendental Equations(1961).

    [45] Y. Jaluria. Computer Methods for Engineering(1996).

    [46] F. Hao, P. Nordlander. Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles. Chem. Phys. Lett., 446, 115(2007).

    [47] P. D. McAtee, S. T. S. Bukkapatnam, A. Lakhtakia. Artificial neural network to estimate the refractive index of a liquid infiltrating a chiral sculptured thin film. J. Nanophoton., 13, 046006(2019).

    [48] A. W. Snyder, J. D. Love. Optical Waveguide Theory(1983).

    [49] L. Liu, M. Faryad, A. S. Hall, G. D. Barber, S. Erten, T. E. Mallouk, A. Lakhtakia, T. S. Mayer. Experimental excitation of multiple surface-plasmon-polariton waves and waveguide modes in a one-dimensional photonic crystal atop a two-dimensional metal grating. J. Nanophoton., 9, 093593(2015).

    [50] A. N. Furs, V. M. Galynsky, L. M. Barkovsky. Surface polaritons in symmetry planes of biaxial crystals. J. Phys. A: Math. Gen., 38, 8083(2005).

    [51] J. A. Polo, S. R. Nelatury, A. Lakhtakia. Propagation of surface waves at the planar interface of a columnar thin film and an isotropic substrate. J. Nanophoton., 1, 013501(2007).

    [52] T. G. Mackay, A. Lakhtakia. Modeling columnar thin films as platforms for surface-plasmonic-polaritonic optical sensing. Photon. Nanostruct.: Fundam. Appl., 8, 140(2010).

    CLP Journals

    [1] Jingjing Hong, Xingping Zhou, Rui Zhuang, Wei Peng, Jiawei Liu, Aiping Liu, Qin Wang. Nanoparticle trapping by counter-surface plasmon polariton lens[J]. Chinese Optics Letters, 2022, 20(2): 023601

    Kiran Mujeeb, Muhammad Faryad, Akhlesh Lakhtakia, Julio V. Urbina. Surface-plasmonic sensor using a columnar thin film in the grating-coupled configuration [Invited][J]. Chinese Optics Letters, 2021, 19(8): 083601
    Download Citation