• Infrared and Laser Engineering
  • Vol. 45, Issue 11, 1136004 (2016)
Wang Shaoqi1、2、3、4、*, Deng Ying1、3, Li Chao1, Wang Fang1, Zhang Yongliang1, Kang Minqiang1, Xue Haitao1, Luo Yun1, Su Jingqin1、2、3, Hu Dongxia1、3, Zheng Kuixing1, and Zhu Qihua1、2、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.3788/irla201645.1136004 Cite this Article
    Wang Shaoqi, Deng Ying, Li Chao, Wang Fang, Zhang Yongliang, Kang Minqiang, Xue Haitao, Luo Yun, Su Jingqin, Hu Dongxia, Zheng Kuixing, Zhu Qihua. Theory study on passively mode-locked Er3+-doped fluorine fiber laser[J]. Infrared and Laser Engineering, 2016, 45(11): 1136004 Copy Citation Text show less
    References

    [1] Wang Pu, Liu Jiang. Progress and prspect on ultrafast Tm-doped fiber lasers at 2 μm wavelength[J]. Chinese J Lasers, 2013, 40(6): 0601002. (in Chinese)

    [2] Yu Feng, Sun Chang, Gao Jing, et al. All-fiber ultra-short super-continuum generation and characters[J]. Infrared and Laser Engineering, 2014, 43(11): 3555-3558. (in Chinese)

    [3] Walsh B. Review of Tm and Ho materials; spectroscopy and lasers[J]. Laser Phys, 2009, 19(4): 855-866.

    [4] Chen Hao, Li Jianfeng, Ou Zhonghua, et al. Progress of Mid-Infrared fiber lasers[J]. Lasers & Optoelectronics Progress, 2011, 48(11): 111402. (in Chinese)

    [5] Zhu F, Hundertmark H, Kolomenskii A A, et al. High-power mid-infrared frequency comb source based on a femtosecond Er: fiber oscillator [J]. Opt Lett, 2011, 38(13): 2360-2362.

    [6] Gao Jing, Yu Feng, Kuang Hongshen, et al. High power 28 W supercontinuum fiber laser source[J]. Infrared and Laser Engineering, 2014, 43(9): 2840-2843. (in Chinese)

    [7] Wei C, Zhu X S, Norwood R A, et al. Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm[J]. Opt Lett, 2012, 37(18): 3849-3851.

    [8] Wang P, Yang L M, Liu J. High pulse energy 2 μm femtosecond fiber laser[J]. Opt Express, 2013, 21(2): 1798-1803.

    [9] Liu J, Wang P. High-power passively mode-locked thulium-doped femtosecond fiber laser at 2.0 μm[J]. Chinese J Lasers, 2012, 39(9): 0902001. (in Chinese).

    [10] Renard W, Canat G, Bourdon P. 26 nJ picosecond solitons from thulium-doped single-mode master oscillator power fiber amplifier[J]. Opt Lett, 2012, 37(3): 377-379.

    [11] Haboucha A, Fortin V, Bernier M, et al. Fiber Bragg grating stabilization of a passively mode-locked 2.8 μm Er3+: fluoride glass fiber laser[J]. Opt Lett, 2014, 39(11): 3294-3297.

    [12] Li J F, Hudson D D, Liu Y, et al. Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror[J]. Opt Lett, 2012, 37(18): 3747-3749.

    [13] Hu T, Hudson D D, Jackson S D. Stable, self-starting, passively mode-locked fiber ring laser of the 3 μm class[J]. Opt Lett, 2014, 39(7): 2133-2136.

    [14] Agrawal G P. Nonlinear Fiber Optics Fifth Edition[M]. London: Academic Press, 2013: 57-59.

    Wang Shaoqi, Deng Ying, Li Chao, Wang Fang, Zhang Yongliang, Kang Minqiang, Xue Haitao, Luo Yun, Su Jingqin, Hu Dongxia, Zheng Kuixing, Zhu Qihua. Theory study on passively mode-locked Er3+-doped fluorine fiber laser[J]. Infrared and Laser Engineering, 2016, 45(11): 1136004
    Download Citation