• Acta Optica Sinica
  • Vol. 42, Issue 8, 0824001 (2022)
Sen Yang1、*, Jiayun Wang2, Ting Zhang1, and Xinying Yu1
Author Affiliations
  • 1School of Information Engineering, Shanxi Vocational University of Engineering Science and Technology, Jinzhong, Shanxi 0 30619, China
  • 2School of Instrument and Electronics, North University of China, Taiyuan, Shanxi 0 30051, China
  • show less
    DOI: 10.3788/AOS202242.0824001 Cite this Article Set citation alerts
    Sen Yang, Jiayun Wang, Ting Zhang, Xinying Yu. Temperature-Voltage Bi-Controllable Broadband Terahertz Polarization Conversion/Absorption Metasurface[J]. Acta Optica Sinica, 2022, 42(8): 0824001 Copy Citation Text show less
    References

    [1] Huang L L, Chen X Z, Mühlenbernd H et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 4, 2808(2013).

    [2] Zheng G X, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 10, 308-312(2015).

    [3] Li L L, Cui T J, Ji W et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 8, 197(2017).

    [4] Tao H, Strikwerda A C, Liu M K et al. Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications[J]. Applied Physics Letters, 97, 261909(2010).

    [5] Cheng K X, Hu Z D, Wang Y Q et al. High-performance terahertz vortex beam generator based on square-split-ring metasurfaces[J]. Optics Letters, 45, 6054-6057(2020).

    [6] Bai T R, Li Q, Wang Y Q et al. Terahertz vortex beam generator based on bound states in the continuum[J]. Optics Express, 29, 25270-25279(2021).

    [7] Grady N K, Heyes J E, Chowdhury D R et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 340, 1304-1307(2013).

    [8] Chiang Y J, Yen T J. A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission[J]. Applied Physics Letters, 102, 011129(2013).

    [9] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [10] Wang J Y, Yang R C, Tian J P et al. A dual-band absorber with wide-angle and polarization insensitivity[J]. IEEE Antennas and Wireless Propagation Letters, 17, 1242-1246(2018).

    [11] Hao J M, Yuan Y, Ran L X et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials[J]. Physical Review Letters, 99, 063908(2007).

    [12] Gao X, Han X, Cao W P et al. Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface[J]. IEEE Transactions on Antennas and Propagation, 63, 3522-3530(2015).

    [13] Wu X X, Meng Y, Wang L et al. Anisotropic metasurface with near-unity circular polarization conversion[J]. Applied Physics Letters, 108, 183502(2016).

    [14] Fahad A K, Ruan C. Ali S A K M, et al. Triple-wide-band ultra-thin metasheet for transmission polarization conversion[J]. Scientific Reports, 10, 8810(2020).

    [15] Wang S Y, Liu W, Geyi W. A circular polarization converter based on in-linked loop antenna frequency selective surface[J]. Applied Physics B, 124, 126(2018).

    [16] Zhao J C, Cheng Y Z, Cheng Z Z. Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves[J]. IEEE Photonics Journal, 10, 4600210(2018).

    [17] Yuan S, Yang R C, Xu J P et al. Photoexcited switchable single-/dual-band terahertz metamaterial absorber[J]. Materials Research Express, 6, 075807(2019).

    [18] Yang S, Yuan S, Wang J Y. Light-excited and switchable dual-band terahertz metamaterial absorber[J]. Acta Optica Sinica, 41, 0216001(2021).

    [19] Xiao Z Y, Zou H L, Zheng X X et al. A tunable reflective polarization converter based on hybrid metamaterial[J]. Optical and Quantum Electronics, 49, 401(2017).

    [20] Zheng X X, Xiao Z Y, Ling X Y. A tunable hybrid metamaterial reflective polarization converter based on vanadium oxide film[J]. Plasmonics, 13, 287-291(2018).

    [21] Lei L, Lou F, Tao K Y et al. Tunable and scalable broadband metamaterial absorber involving VO2-based phase transition[J]. Photonics Research, 7, 734-741(2019).

    [22] Yang Z H, Jiang M Z, Liu Y C et al. Tunable-bandwidth terahertz polarization converter based on a vanadium dioxide hybrid metasurface[J]. Chinese Journal of Lasers, 48, 1714001(2021).

    [23] Wang J C, Wang X S, Shao H Y et al. Peak modulation in multicavity-coupled graphene-based waveguide system[J]. Nanoscale Research Letters, 12, 9(2017).

    [24] Yadav V S, Ghosh S K, Bhattacharyya S et al. Graphene-based metasurface for a tunable broadband terahertz cross-polarization converter over a wide angle of incidence[J]. Applied Optics, 57, 8720-8726(2018).

    [25] Wang Y, Leng Y B, Dong L H et al. Design of tunable metamaterial absorber based on graphene-metal hybrid structure[J]. Acta Optica Sinica, 38, 0716001(2018).

    [26] Li H, Yu J, Chen Z. Polarization-independent and incident-angle-insensitive switchable broadband absorber/reflector based on single-layer graphene[J]. Chinese Journal of Lasers, 47, 0803001(2020).

    [27] Li D M, Yuan S, Yang R C et al. Dynamical optical-controlled multi-state THz metamaterial absorber[J]. Acta Optica Sinica, 40, 0816001(2020).

    [28] Quader S, Zhang J, Akram M R et al. Graphene-based high-efficiency broadband tunable linear-to-circular polarization converter for terahertz waves[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 19347012(2020).

    [29] Han J Z, Chen R S. Tunable broadband terahertz absorber based on a single-layer graphene metasurface[J]. Optics Express, 28, 30289-30298(2020).

    [30] Zhou Y L, Cao X Y, Gao J et al. Reconfigurable metasurface for multiple functions: magnitude, polarization and phase modulation[J]. Optics Express, 26, 29451-29459(2018).

    [31] Karman T. Microwave shielding with far-from-circular polarization[J]. Physical Review A, 101, 042702(2020).

    [32] He H R, Shang X J, Xu L et al. Thermally switchable bifunctional plasmonic metasurface for perfect absorption and polarization conversion based on VO2[J]. Optics Express, 28, 4563-4570(2020).

    [33] Yan D X, Meng M, Li J S et al. Vanadium dioxide-assisted broadband absorption and linear-to-circular polarization conversion based on a single metasurface design for the terahertz wave[J]. Optics Express, 28, 29843-29854(2020).

    [34] Hanson G W. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 103, 064302(2008).

    [35] Huang X, He W, Yang F et al. Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime[J]. Optics Express, 26, 25558-25562(2018).

    [36] Ju L, Geng B S, Horng J et al. Graphene plasmonics for tunable terahertz metamaterials[J]. Nature Nanotechnology, 6, 630-634(2011).

    [37] Yan H G, Li X S, Chandra B et al. Tunable infrared plasmonic devices using graphene/insulator stacks[J]. Nature Nanotechnology, 7, 330-334(2012).

    [38] Lü T T, Li Y X, Ma H F et al. Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition[J]. Scientific Reports, 6, 23186(2016).

    [39] Fan F, Hou Y, Jiang Z W et al. Terahertz modulator based on insulator-metal transition in photonic crystal waveguide[J]. Applied Optics, 51, 4589-4596(2012).

    [40] Mao M, Liang Y Y, Liang R S et al. Dynamically temperature-voltage controlled multifunctional device based on VO2 and graphene hybrid metamaterials: perfect absorber and highly efficient polarization converter[J]. Nanomaterials, 9, 1101(2019).

    [41] Smith D R, Schultz S, Markoš P et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients[J]. Physical Review B, 65, 195104(2002).

    [42] Chen X D, Grzegorczyk T M, Wu B I et al. Robust method to retrieve the constitutive effective parameters of metamaterials[J]. Physical Review E, 70, 016608(2004).

    Sen Yang, Jiayun Wang, Ting Zhang, Xinying Yu. Temperature-Voltage Bi-Controllable Broadband Terahertz Polarization Conversion/Absorption Metasurface[J]. Acta Optica Sinica, 2022, 42(8): 0824001
    Download Citation