• Acta Physica Sinica
  • Vol. 68, Issue 21, 210501-1 (2019)
Guang-Kai Liu1、*, Hou-De Quan1, Yan-Mei Kang2, Hui-Xian Sun1, Pei-Zhang Cui1, and Yue-Ming Han3
Author Affiliations
  • 1Department of Electronics and Optical Engineering, Army Engineering University, Shijiazhuang 050003, China
  • 2School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China
  • 3The Troop of 66389, Shijiazhang 050000, China
  • show less
    DOI: 10.7498/aps.68.20190952 Cite this Article
    Guang-Kai Liu, Hou-De Quan, Yan-Mei Kang, Hui-Xian Sun, Pei-Zhang Cui, Yue-Ming Han. A quadratic polynomial receiving scheme for sine signals enhanced by stochastic resonance[J]. Acta Physica Sinica, 2019, 68(21): 210501-1 Copy Citation Text show less
    Quadratic polynomial receiving structure for sine signals enhanced by SR.SR系统增强正弦信号的二次多项式接收结构
    Fig. 1. Quadratic polynomial receiving structure for sine signals enhanced by SR.SR系统增强正弦信号的二次多项式接收结构
    Waveform of time and frequency zone of sine wave enhanced by SR (input SNR = –18 dB, the noise intensity , signal amplitude , parameters of system , ): (a) The waveform of input signal in time zone; (b) the amplitude of input signal in frequency zone; (c) the waveform of output signal in time zone; (d) the amplitude of output signal in frequency zone正弦信号经SR系统增强前后的时频域波形(输入SNR = –18 dB, 噪声功率 , 信号幅度, SR系统参数, ) (a) 输入信号时域波形; (b)输入信号频域幅值谱; (c)输出信号时域波形; (d)输出信号频域幅值谱
    Fig. 2. Waveform of time and frequency zone of sine wave enhanced by SR (input SNR = –18 dB, the noise intensity , signal amplitude , parameters of system , ): (a) The waveform of input signal in time zone; (b) the amplitude of input signal in frequency zone; (c) the waveform of output signal in time zone; (d) the amplitude of output signal in frequency zone 正弦信号经SR系统增强前后的时频域波形(输入SNR = –18 dB, 噪声功率 , 信号幅度 , SR系统参数 , ) (a) 输入信号时域波形; (b)输入信号频域幅值谱; (c)输出信号时域波形; (d)输出信号频域幅值谱
    Probability density function of particles of SR (input SNR = –14 dB, the noise intensity , signal amplitude , parameters of system , ): (a) The probability density of particles before SR processed; (b) the probability density of particles after SR processed; (c) the partial of probability density of particles after SR processed粒子处于不同位置时的概率密度(输入SNR = –14 dB dB, 噪声功率 , 信号幅度, SR系统参数, ) (a)未经SR处理的粒子的分布概率; (b)经SR处理后粒子的分布概率; (c)经SR处理后粒子的分布概率局部图
    Fig. 3. Probability density function of particles of SR (input SNR = –14 dB, the noise intensity , signal amplitude , parameters of system , ): (a) The probability density of particles before SR processed; (b) the probability density of particles after SR processed; (c) the partial of probability density of particles after SR processed 粒子处于不同位置时的概率密度(输入SNR = –14 dB dB, 噪声功率 , 信号幅度 , SR系统参数 , ) (a)未经SR处理的粒子的分布概率; (b)经SR处理后粒子的分布概率; (c)经SR处理后粒子的分布概率局部图
    Output of at different N (input SNR = –18 dB, the noise intensity , signal amplitude , parameters of system , ): (a) The waveform of test statistics when N= 1; (b) the waveform of test statistics when N= 10不同N时的输出值(输入SNR = –18 dB, 噪声功率 , 信号幅度, SR系统参数, ) (a) N = 1时检验统计量的时域波形; (b) N = 10时检验统计量的时域波形
    Fig. 4. Output of at different N (input SNR = –18 dB, the noise intensity , signal amplitude , parameters of system , ): (a) The waveform of test statistics when N= 1; (b) the waveform of test statistics when N= 10 不同N时 的输出值(输入SNR = –18 dB, 噪声功率 , 信号幅度 , SR系统参数 , ) (a) N = 1时检验统计量的时域波形; (b) N = 10时检验统计量的时域波形
    Output probability density function of at different N (input SNR = –14 dB, the noise intensity , signal amplitude , parameters of system 104, , ): (a) The output probability density when N= 1; (b) the output probability density when N = 10; (c) the output probability density when N = 50; (d) the output probability density whenN = 100不同N时g(x0)的输出概率密度(输入SNR = –14 dB, 噪声功率, 信号幅度A = 0.4, SR系统参数104, , ) (a) N = 1时粒子的分布概率; (b) N = 10时粒子的分布概率; (c) N = 50时粒子的分布概率; (d) N = 100时粒子的分布概率
    Fig. 5. Output probability density function of at different N (input SNR = –14 dB, the noise intensity , signal amplitude , parameters of system 104, , ): (a) The output probability density when N= 1; (b) the output probability density when N = 10; (c) the output probability density when N = 50; (d) the output probability density whenN = 100 不同Ng(x0)的输出概率密度(输入SNR = –14 dB, 噪声功率 , 信号幅度A = 0.4, SR系统参数 104, , ) (a) N = 1时粒子的分布概率; (b) N = 10时粒子的分布概率; (c) N = 50时粒子的分布概率; (d) N = 100时粒子的分布概率
    Output bit error ratio of different receiving structure不同接收结构的系统输出误码率
    Fig. 6. Output bit error ratio of different receiving structure不同接收结构的系统输出误码率
    Output bit error ratio of quadratic polynomial receiving structure at different N不同N时的二次多项式接收结构的误码率
    Fig. 7. Output bit error ratio of quadratic polynomial receiving structure at different N不同N时的二次多项式接收结构的误码率
    Guang-Kai Liu, Hou-De Quan, Yan-Mei Kang, Hui-Xian Sun, Pei-Zhang Cui, Yue-Ming Han. A quadratic polynomial receiving scheme for sine signals enhanced by stochastic resonance[J]. Acta Physica Sinica, 2019, 68(21): 210501-1
    Download Citation