• Laser & Optoelectronics Progress
  • Vol. 58, Issue 10, 1011017 (2021)
Xiquan Fu*†, Xianwei Huang, Wei Tan, and Yanfeng Bai
Author Affiliations
  • College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China
  • show less
    DOI: 10.3788/LOP202158.1011017 Cite this Article Set citation alerts
    Xiquan Fu, Xianwei Huang, Wei Tan, Yanfeng Bai. Correlation Imaging Research Under Disturbance of Channel Airflow[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011017 Copy Citation Text show less
    References

    [1] D’Angelo M, Kim Y H, Kulik S P et al. Identifying entanglement using quantum ghost interference and imaging[J]. Physical Review Letters, 92, 233601(2004). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT04000004000006000033000001&idtype=cvips&gifs=Yes

    [2] Chen Z H, Zhou Y, Shen J T. Correlation signatures for a coherent three-photon scattering in waveguide quantum electrodynamics[J]. Optics Letters, 45, 2559-2562(2020).

    [3] Chen Z H, Zhou Y, Shen J T. Dissipation-induced photonic-correlation transition in waveguide-QED systems[J]. Physical Review A, 96, 053805(2017). http://journals.aps.org/pra/abstract/10.1103/PhysRevA.96.053805

    [4] Zhou Y, Chen Z H, Wang L H et al. Efficient two-photon excitation by photonic dimers[J]. Optics Letters, 44, 475-478(2019). http://www.researchgate.net/publication/330423776_Efficient_two-photon_excitation_by_photonic_dimers

    [5] Chen Z H, Zhou Y, Shen J T. Entanglement-preserving approach for reservoir-induced photonic dissipation in waveguide QED systems[J]. Physical Review A, 98, 053830(2018). http://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.053830

    [6] Chen Z, Zhou Y, Shen J T. Photon antibunching and bunching in a ring-resonator waveguide quantum electrodynamics system[J]. Optics Letters, 41, 3313-3316(2016). http://www.ncbi.nlm.nih.gov/pubmed/27420523

    [7] D’Angelo M, Valencia A, Rubin M H et al. Resolution of quantum and classical “ghost” imaging[C]. //2005 Quantum Electronics and Laser Science Conference, May 22-27, 2005, Baltimore, MD, USA., 1, 566-568(2005).

    [8] Abouraddy A F, Saleh B E A, Sergienko A V et al. Role of entanglement in two-photon imaging[J]. Physical Review Letters, 87, 123602(2001).

    [9] Pittman T B, Shih Y H, Strekalov D V et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 52, R3429-R3432(1995). http://europepmc.org/abstract/med/9912767

    [10] Ferri F, Magatti D, Gatti A et al. High-resolution ghost image and ghost diffraction experiments with thermal light[J]. Physical Review Letters, 94, 183602(2005). http://europepmc.org/abstract/MED/15904368

    [11] Bo Z W, Gong W L, Li E R et al. Multiple-input ghost imaging via sparsity constraints with thermal light[J]. Applied Physics Express, 7, 102501(2014).

    [12] Cao D Z, Xiong J, Wang K G. Geometrical optics in correlated imaging systems[J]. Physical Review A, 71, 013801(2005). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PLRAAN000071000001013801000001&idtype=cvips&gifs=Yes

    [13] Gao Y, Bai Y F, Fu X Q. Point-spread function in ghost imaging system with thermal light[J]. Optics Express, 24, 25856-25866(2016). http://europepmc.org/abstract/med/27828534

    [14] Yang C, Wang C L, Guan J et al. Scalar-matrix-structured ghost imaging[J]. Photonics Research, 4, 281-285(2016). http://www.cnki.com.cn/Article/CJFDTotal-GZXJ201606013.htm

    [15] Wang W, Wang Y P, Li J H et al. Iterative ghost imaging[J]. Optics Letters, 39, 5150-5153(2014).

    [16] Sprigg J, Peng T, Shih Y. Super-resolution imaging using the spatial-frequency filtered intensity fluctuation correlation[J]. Scientific Reports, 6, 38077(2016). http://europepmc.org/articles/PMC5131481/

    [17] Gong W L. High-resolution pseudo-inverse ghost imaging[J]. Photonics Research, 3, 234-237(2015). http://www.opticsinfobase.org/prj/abstract.cfm?uri=prj-3-5-234

    [18] Wu Z W, Qiu X D, Chen L X. Current status and prospect for correlated imaging technique[J]. Laser & Optoelectronics Progress, 57, 060001(2020).

    [19] Feng W, Zhao X D, Tang S J et al. Compressive computational ghost imaging method based on region segmentation[J]. Laser & Optoelectronics Progress, 57, 101105(2020).

    [20] Zhao M, Wang Y, Tian Z M et al. Method of push-broom underwater ghost imaging computation[J]. Laser & Optoelectronics Progress, 56, 161101(2019).

    [21] Morris P A, Aspden R S, Bell J E C et al. Imaging with a small number of photons[J]. Nature Communications, 6, 5913(2015).

    [22] Shi X H, Li H X, Bai Y F et al. Negative influence of detector noise on ghost imaging based on the photon counting technique at low light levels[J]. Applied Optics, 56, 7320-7326(2017). http://europepmc.org/abstract/MED/29048051

    [23] Yang Y, Shi J H, Cao F et al. Computational imaging based on time-correlated single-photon-counting technique at low light level[J]. Applied Optics, 54, 9277-9283(2015). http://europepmc.org/abstract/MED/26560582

    [24] Liu X L, Shi J H, Wu X Y et al. Fast first-photon ghost imaging[J]. Scientific Reports, 8, 5012(2018). http://www.ncbi.nlm.nih.gov/pubmed/29567969

    [25] Sun L, Shi J H, Wu X Y et al. Photon-limited imaging through scattering medium based on deep learning[J]. Optics Express, 27, 33120-33134(2019). http://www.ncbi.nlm.nih.gov/pubmed/31878386

    [26] Meyers R E, Deacon K S, Shih Y. Turbulence-free ghost imaging[J]. Applied Physics Letters, 98, 111115(2011).

    [27] Meyers R E, Deacon K S, Shih Y H. Positive-negative turbulence-free ghost imaging[J]. Applied Physics Letters, 100, 131114(2012).

    [28] Chen Z Y, Cui S W, Zhang L et al. Measuring the intensity fluctuation of partially coherent radially polarized beams in atmospheric turbulence[J]. Optics Express, 22, 18278-18283(2014).

    [29] Liu X H, Pu J X. Investigation on the scintillation reduction of elliptical vortex beams propagating in atmospheric turbulence[J]. Optics Express, 19, 26444-26450(2011).

    [30] Cheng W, Haus J W, Zhan Q W. Propagation of vector vortex beams through a turbulent atmosphere[J]. Optics Express, 17, 17829-17836(2009). http://www.ncbi.nlm.nih.gov/pubmed/19907570

    [31] Huang Y P, Zeng A P, Gao Z H et al. Beam wander of partially coherent array beams through non-Kolmogorov turbulence[J]. Optics Letters, 40, 1619-1622(2015). http://europepmc.org/abstract/MED/25872031

    [32] Liu X L, Wang F, Wei C et al. Experimental study of turbulence-induced beam wander and deformation of a partially coherent beam[J]. Optics Letters, 39, 3336-3339(2014). http://www.opticsinfobase.org/ol/upcoming_pdf.cfm?id=209439

    [33] Wang Q, Zhu Y, Zhang Y X. Precision wander model of beam wave in the weak to strong turbulence of atmosphere[J]. Optics Letters, 42, 3213-3216(2017).

    [34] Zhang P L, Gong W L, Shen X et al. Correlated imaging through atmospheric turbulence[J]. Physical Review A, 82, 033817(2010). http://arxiv.org/abs/1005.5011

    [35] Chen M L, Li E R, Gong W L et al. Ghost imaging lidar via sparsity constraints in real atmosphere[J]. Optics and Photonics Journal, 3, 83-85(2013). http://www.oalib.com/paper/2989188

    [36] Tan W, Huang X W, Nan S Q et al. Effect of the collection range of a bucket detector on ghost imaging through turbulent atmosphere[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 36, 1261-1266(2019). http://www.ncbi.nlm.nih.gov/pubmed/31503965

    [37] Tan W, Huang X W, Nan S Q et al. Ghost imaging through inhomogeneous turbulent atmosphere along an uplink path and a downlink path[J]. OSA Continuum, 3, 1222-1231(2020). http://www.researchgate.net/publication/340980733_Ghost_imaging_through_inhomogeneousturbulent_atmosphere_along_an_uplink_pathand_a_downlink_path

    [38] Shi D F, Fan C Y, Zhang P F et al. Two-wavelength ghost imaging through atmospheric turbulence[J]. Optics Express, 21, 2050-2064(2013).

    [39] Ding H L, Yi S H, Zhu Y Z et al. Experimental investigation on aero-optics of supersonic turbulent boundary layers[J]. Applied Optics, 56, 7604-7610(2017).

    [40] Gordeyev S, Jumper E, Hayden T E. Aero-optical effects of supersonic boundary layers[J]. AIAA Journal, 50, 682-690(2012). http://d.wanfangdata.com.cn/periodical/620dfbd98ed5be449fff1485d6fc40e1

    [41] Cress J, Gordeyev S, Post M et al. Aero-optical measurements in a turbulent, subsonic boundary layer at different elevation angles[C]. //39th Plasmadynamics and Lasers Conference, June 23-26, 2008, Seattle, Washington, 1-14(2008).

    [42] Huang X W, Shi X H, Nan S Q et al. Investigation on the behavior of a laser propagating through a random environment induced by wind[J]. Optics Express, 27, 9420-9428(2019). http://www.ncbi.nlm.nih.gov/pubmed/31045093

    [43] Dipankar A, Marchiano R, Sagaut P. Trajectory of an optical vortex in atmospheric turbulence[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 80, 046609(2009). http://www.ncbi.nlm.nih.gov/pubmed/19905473

    [44] Lochab P, Senthilkumaran P, Khare K. Propagation of converging polarization singular beams through atmospheric turbulence[J]. Applied Optics, 58, 6335-6345(2019). http://www.researchgate.net/publication/334988782_Propagation_of_converging_polarization_singular_beams_through_atmospheric_turbulence

    [45] Luo Y J, Ji X L, Yu H. Influence of coma aberration on aperture averaged scintillations in oceanic turbulence[J]. Optics & Laser Technology, 98, 46-55(2018).

    [46] Huang X W, Bai Y F, Fu X Q. Stable and secure image transmission based on temporal ghost imaging[J]. Journal of Optics, 21, 055701(2019).

    [47] Ryczkowski P, Barbier M, Friberg A T et al. Ghost imaging in the time domain[J]. Nature Photonics, 10, 167-170(2016). http://www.nature.com/articles/nphoton.2015.274

    [48] Yang D Y, Chang C, Wu G H et al. Compressive ghost imaging of the moving object using the low-order moments[J]. Applied Sciences, 10, 7941(2020). http://www.researchgate.net/publication/346804745_Compressive_Ghost_Imaging_of_the_Moving_Object_Using_the_Low-Order_Moments

    [49] Huang X W, Nan S Q, Tan W et al. Ghost imaging influenced by a supersonic wind-induced random environment[J]. Optics Letters, 46, 1009-1012(2021). http://www.researchgate.net/publication/348825814_Ghost_imaging_influenced_by_a_supersonic_wind-induced_random_environment

    [50] Xu G J, Song Z H. Amplitude fluctuations for optical waves propagation through non-Kolmogorov coronal solar wind turbulence channels[J]. Optics Express, 26, 8566-8580(2018). http://europepmc.org/abstract/MED/29715822

    [51] Yu L, Hu B B, Zhang Y X. Intensity of vortex modes carried by Lommel beam in weak-to-strong non-Kolmogorov turbulence[J]. Optics Express, 25, 19538-19547(2017). http://europepmc.org/abstract/MED/29041147

    [52] Huang X W, Nan S Q, Tan W et al. Ghost imaging for detecting trembling with random temporal changing[J]. Optics Letters, 45, 1354-1357(2020). http://www.researchgate.net/publication/339193816_Ghost_imaging_for_detecting_trembling_with_random_temporal_changing

    [53] Sun S, Gu J H, Lin H Z et al. Gradual ghost imaging of moving objects by tracking based on cross correlation[J]. Optics Letters, 44, 5594-5597(2019). http://www.ncbi.nlm.nih.gov/pubmed/31730129

    Xiquan Fu, Xianwei Huang, Wei Tan, Yanfeng Bai. Correlation Imaging Research Under Disturbance of Channel Airflow[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011017
    Download Citation