• Journal of Innovative Optical Health Sciences
  • Vol. 10, Issue 4, 1730008 (2017)
Xuanjin Yang1、* and Liangzhong Xiang2
Author Affiliations
  • 1Stephenson Research and Technology Center, University of Oklahoma Norman, Oklahoma 73019, USA
  • 2School of Electrical and Computer Engineering, University of Oklahoma Norman,Oklahoma 73019, USA
  • show less
    DOI: 10.1142/s1793545817300087 Cite this Article
    Xuanjin Yang, Liangzhong Xiang. Photoacoustic imaging of prostate cancer[J]. Journal of Innovative Optical Health Sciences, 2017, 10(4): 1730008 Copy Citation Text show less
    References

    [1] Cancer Stat Facts: Prostate Cancer. National Cancer Institute (2015). available at: https://seer.cancer.gov/statfacts/html/prost.html. [Last accessed on 2017 Mar 5].

    [2] D. Ilic, M. M. Neuberger, M. Djulbegovic, P. Dahm, “Screening for prostate cancer,” Cochrane Database Syst. Rev., 01 31(3), CD004720 (2013).

    [3] A. A. A. Elgamal, H. P. Van Poppel, W. M. Van de Voorde, J. A. Van Dorpe, R. H. Oyen, L. V. Baert, “Impalpable invisible stage T1c prostate cancer: Characteristics and clinical relevance in 100 radical prostatectomy specimens-A different view,” J. Urol. 157 (1), 244–250 (1997).

    [4] T. H. Van der Kwast, “The trade-off between sensitivity and specificity of clinical protocols for identification of insignificant prostate cancer,” Eur. Urol. 62 (3), 469–471 (2012).

    [5] E. W. Steyerberg, M. J. Roobol, M. W. Kattan, T. H. van der Kwast, H. J. de Koning, F. H. Schroder, “Prediction of indolent prostate cancer: Validation and updating of a prognostic nomogram,” J. Urol. 177 (1), 107–112 (2007).

    [6] H. G. Welch, L. M. Schwartz, S. Woloshin, “Prostate-specific antigen levels in the United States: Implications of various definitions for abnormal,” J. Natl. Cancer Inst. 97 (15), 1132–1137 (2005).

    [7] R. C. Flanigan, W. J. Catalona, J. P. Richie, F. R. Ahmann, M. A. Hudson, P. T. Scardino, J. B. Dekernion, T. L. Ratliff, L. R. Kavoussi, B. L. Dalkin et al., “Accuracy of digital rectal examination and transrectal ultrasonography in localizing prostate-cancer,” J. Urol. 152 (5), 1506–1509 (1994).

    [8] E. D. Cook, A. C. Nelson, “Prostate cancer screenin,” Curr. Oncol. Rep. 13(1), 57–62 (2011).

    [9] W. J. Catalona, J. P. Richie, F. R. Ahmann, M. A. Hudson, P. T. Scardino, R. C. Flanigan, J. B. DeKernion, T. L. Ratliff, L. R. Kavoussi, B. L. Dalkin et al., “Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: Results of a multicenter clinical trial of 6,630 Men,” J. Urol. 197(2S), S200–S207 (2017).

    [10] T. A. Stamey, N. Yang, A. R. Hay, J. E. McNeal, F. S. Freiha, E. Redwine, “Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate,” N. Engl. J. Med. 317 (15), 909–916 (1987).

    [11] P. Tenke, J. Horti, P. Balint, B. Kovacs, Prostate cancer screening, Prostate Cancer, J. RamonL. J. Denis, Eds., pp. 65–81, Springer, Berlin, Heidelberg (2007).

    [12] R. Postma, F. H. Schroder, G. J. van Leenders, R. F. Hoedemaeker, A. N. Vis, M. J. Roobol, T. H. van der Kwast, “Cancer detection and cancer characteristics in the European Randomized Study of Screening for Prostate Cancer (ERSPC) — Section Rotterdam: A comparison of two rounds of screening,” Eur. Urol. 52 (1), 89–97 (2007).

    [13] H. M. Nagler, E. W. Gerber, P. Homel, J. R. Wagner, J. Norton, S. Lebovitch, J. L. Phillips, “Digital rectal examination is barrier to population-based prostate cancer screenin,” Urology 65 (6), 1137–1140 (2005).

    [14] G. S. Gerber, I. M. Thompson, R. Thisted, G. W. Chodak, “Disease-specific survival following routine prostate cancer screening by digital rectal examination,” J. Am. Med. Assoc. 269 (1), 61–64 (1993).

    [15] American cancer society: What tests can detect prostate cancer early American Cancer Society (2016), available at https://www.cancer.org/cancer/prostate-cancer/early-detection/tests.html.

    [16] T. A. Stamey, F. S. Freiha, J. E. McNeal, E. A. Redwine, A. S. Whittemore, H.-P. Schmid, “Localized prostate cancer: Relationship of tumor volume to clinical significance for treatment of prostate cancer,” Cancer 71 (S3), 933–938 (1993).

    [17] K. T. McVary, C. G. Roehrborn, A. L. Avins, M. J. Barry, R. C. Bruskewitz, R. F. Donnell, H. E. Foster, Jr., C. M. Gonzalez, S. A. Kaplan, D. F. Penson et al., “Update on AUA guideline on the management of benign prostatic hyperplasia,” J. Urol. 185 (5), 1793–1803 (2011).

    [18] R. J. Babaian, C. Mettlin, R. Kane, G. P. Murphy, F. Lee, J. R. Drago, A. Chesley, “The relationship of prostate-specific antigen to digital rectal examination and transrectal ultrasonography: Findings of the American cancer society national prostate cancer detection project,” Cancer 69 (5), 1195–1200 (1992).

    [19] C. J. Harvey, J. Pilcher, J. Richenberg, U. Patel, F. Frauscher, “Applications of transrectal ultrasound in prostate cancer,” Br. J. Radiol. 85 (1), S3–S17 (2012).

    [20] W. J. Ellis, M. K. Brawer, “The significance of isoechoic prostatic carcinoma,” J. Urol. 152 (6II), 2304–2307 (1994).

    [21] F. A. Ganie, M. S. Wanie, S. A. Ganie, H. Lone, M. Gani, M. F. Mir, N. A. Khan, “Correlation of transrectal ultrasonographic findings with histo pathology in prostatic cancer,” J. Educ. Health Promot. 3, 38 (2014).

    [22] P. J. Littrup, S. E. Bailey, “Prostate cancer: The role of transrectal ultrasound and its impact on cancer detection and management,” Radiol. Clin. North Am. 38 (1), 87–113 (2000).

    [23] F. J. Fowler, Jr., M. J. Barry, B. Walker-Corkery, J. F. Caubet, D. W. Bates, J. M. Lee, A. Hauser, M. McNaughton-Collins, “The impact of a suspicious prostate biopsy on patients’ psychological, socio-behavioral, and medical care outcomes,” J. Gen. Intern. Med. 21 (7), 715–721 (2006).

    [24] S. Loeb, A. Vellekoop, H. U. Ahmed, J. Catto, M. Emberton, R. Nam, D. J. Rosario, V. Scattoni, Y. Lotan, “Systematic review of complications of prostate biopsy,” Eur. Urol. 64 (6), 876–892 (2013).

    [25] T. H. Ecke, S. Gunia, P. Bartel, S. Hallmann, S. Koch, J. Ruttloff, “Complications and risk factors of transrectal ultrasound guided needle biopsies of the prostate evaluated by questionnaire,” Urol. Oncol. 26 (5), 474–478 (2008).

    [26] J. H. Yacoub, S. Verma, J. S. Moulton, S. Eggener, A. Oto, “Imaging-guided prostate biopsy: Conventional and emerging techniques,” Radiographics 32 (3), 819–837 (2012).

    [27] G. C. Durkan, D. R. Greene, “Diagnostic dilemmas in detection of prostate cancer in patients undergoing transrectal ultrasound-guided needle biopsy of the prostate,” Prostate Cancer Prostatic Dis. 3 (1), 13–20 (2000).

    [28] B. O. B. Djavan, A. Zlotta, M. Remzi, K. Ghawidel, A. L. I. Basharkhah, C. C. Schulman, M. Marberger, “Optimal predictors of prostate cancer on repeat prostate biopsy: A prospective study of 1,051 men,” J. Urol. 163 (4), 1144–1149 (2000).

    [29] O. Ukimura, O. Durrani, R. J. Babaian, “Role of psa and its indices in determining the need for repeat prostate biopsies,” Urology 50 (1), 66–72 (1997).

    [30] T. O. Morgan, D. G. McLeod, E. S. Leifer, G. P. Murphy, J. W. Moul, “Prospective use of free prostate-specific antigen to avoid repeat prostate biopsies in men with elevated total prostate-specific antigen,” Urology 48 (6, Supplement 1), 76–80 (1996).

    [31] A. R. Padhani, C. J. Gapinski, D. A. Macvicar, G. J. Parker, J. Suckling, P. B. Revell, M. O. Leach, D. P. Dearnaley, J. E. Husband, “Dynamic contrast enhanced MRI of prostate cancer: Correlation with morphology and tumour stage, histological grade and PSA,” Clin. Radiol. 55 (2), 99–109 (2000).

    [32] A. P. Kirkham, M. Emberton, C. Allen, “How good is MRI at detecting and characterising cancer within the prostate ,” Eur. Urol. 50 (6), 1163–1174 (2006).

    [33] L. Dickinson, H. U. Ahmed, C. Allen, J. O. Barentsz, B. Carey, J. J. Futterer, S. W. Heijmink, P. J. Hoskin, A. Kirkham, A. R. Padhani et al., “Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: Recommendations from a European consensus meeting,” Eur. Urol. 59 (4), 477–494 (2011).

    [34] T. Hara, N. Kosaka, H. Kishi, “PET imaging of prostate cancer using carbon-11-choline,” J. Nucl. Med. 39 (6), 990–995 (1998).

    [35] C. Spick, K. Herrmann, J. Czernin, “Evaluation of prostate cancer with 11C-Acetate PET/CT,” J. Nucl Med. 57 (Suppl 3), 30S–37S (2016).

    [36] M. Picchio, M. Piert, “Prostate cancer imaging,” Eur. J. Nucl. Med. Mol. Imaging 40 (Suppl 1), S1–S4 (2013).

    [37] M. Xu, L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77 (4), 041101 (2006).

    [38] L. V. Wang, S. Hu, “Photoacoustic tomography: In vivo imaging from organelles to organs,” Science 335 (6075), 1458–1462 (2012).

    [39] P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1 (4), 602–631 (2011).

    [40] C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23 (8), 648–650 (1998).

    [41] H. Wang, X. Yang, Y. Liu, B. Jiang, Q. Luo, “Reflection-mode optical-resolution photoacoustic microscopy based on a reflective objective,” Opt. Express 21 (20), 24210–24218 (2013).

    [42] H. Wang, X. Yang, Z. Wang, Z. Deng, H. Gong, Q. Luo, “Early monitoring of cerebral hypoperfusion in rats by laser speckle imaging and functional photoacoustic microscopy,” J. Biomed. Opt. 17 (6), 0612071–0612079 (2012).

    [43] Y. Liu, X. Yang, H. Gong, B. Jiang, H. Wang, G. Xu, Y. Deng, “Assessing the effects of norepinephrine on single cerebral microvessels using optical-resolution photoacoustic microscope,” J. Biomed. Opt. 18 (7), 076007–076007 (2013).

    [44] X. Ji, K. Xiong, S. Yang, D. Xing, “Intravascular confocal photoacoustic endoscope with dual-element ultrasonic transducer,” Opt. Express 23 (7), 9130–9136 (2015).

    [45] L. Xiang, B. Wang, L. Ji, H. Jiang, “4-D photoacoustic tomography,” Sci. Rep. 3, 1113 (2013).

    [46] Y. Lao, D. Xing, S. Yang, L. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53 (15), 4203–4212 (2008).

    [47] G. J. Tserevelakis, I. Vrouvaki, P. Siozos, K. Melessanaki, K. Hatzigiannakis, C. Fotakis, G. Zacharakis, “Photoacoustic imaging reveals hidden underdrawings in paintings,” Sci. Rep. 7 (1), 747 (2017).

    [48] A. G. Bell, “On the production and reproduction of sound by light,” Am. J. Sci. 118, 305–324 (1880).

    [49] J. Xia, J. Yao, L. V. Wang, “Photoacoustic tomography: Principles and advances,” Electromagn. Waves (Camb.) 147, 1–22 (2014).

    [50] T. Durduran, R. Choe, W. B. Baker, A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73 (7), 076701 (2010).

    [51] R. S. C. Cobbold, Foundations of Biomedical Ultrasound, Oxford University Press, Oxford (2006).

    [52] P. J. A. Frinking, A. Bouakaz, J. Kirkhorn, F. J. Ten Cate, N. de Jong, “Ultrasound contrast imaging: Current and new potential methods,” Ultrasound Med. Biol. 26 (6), 965–975 (2000).

    [53] S. Hu, K. Maslov, L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36 (7), 1134–1136 (2011).

    [54] J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24 (4), 436–440 (2005).

    [55] S. H. El-Gohary, M. K. Metwally, S. Eom, S. H. Jeon, K. M. Byun, T.-S. Kim, “Design study on photoacoustic probe to detect prostate cancer using 3D Monte Carlo simulation and finite element method,” Biomed. Eng. Lett. 4 (3), 250–257 (2014).

    [56] C. H. Lee, O. Akin-Olugbade, A. Kirschenbaum, “Overview of prostate anatomy, histology, and pathology,” Endocrinol. Metab. Clin. North Am. 40 (3), 565–575 (2011).

    [57] M. A. Yaseen, S. A. Ermilov, H. P. Brecht, R. Su, A. Conjusteau, M. Fronheiser, B. A. Bell, M. Motamedi, A. A. Oraevsky, “Optoacoustic imaging of the prostate: Development toward image-guided biopsy,” J. Biomed. Opt. 15 (2), 021310 (2010).

    [58] X. D. Wang, W. W. Roberts, P. L. Carson, D. P. Wood, J. B. Fowlkes, “Photoacoustic tomography: A potential new tool for prostate cancer,” Biomed. Opt. Express 1 (4), 1117–1126 (2010).

    [59] P. Dong-qing, P. Yuan-yuan, G. Jian, L. Hui, “Laser illumination modality of photoacoustic imaging technique for prostate cancer,” J. Phys. Conf. Ser. 679 (1), 012026 (2016).

    [60] S. Tang, J. Chen, P. Samant, K. Stratton, L. Xiang, “Transurethral photoacoustic endoscopy for prostate cancer: A simulation study,” IEEE. Trans. Med. Imaging 35 (7), 1780–1787 (2016).

    [61] M. A. L. Bell, X. Y. Guo, D. Y. Song, E. M. Boctor, “Transurethral light delivery for prostate photoacoustic imaging,” J. Biomed. Opt. 20 (3), 036002 (2015).

    [62] M. A. Lediju Bell, N. P. Kuo, D. Y. Song, J. Kang, E. M. Boctor, In vivo photoacoustic imaging of prostate brachytherapy seeds. Proc. SPIE Photons Plus Ultrasound: Imaging and Sensing 2014, A. A. OraevskyL. V. Wang, Eds., pp. 894348–494310, San Francisco, CA, USA (2014).

    [63] T. Mitcham, K. Dextraze, H. Taghavi, M. Melancon, R. Bouchard, “Photoacoustic imaging driven by an interstitial irradiation source,” Photoacoustics 3 (2), 45–54 (2015).

    [64] A. Horiguchi, K. Tsujita, K. Irisawa, T. Kasamatsu, K. Hirota, M. Kawaguchi, M. Shinchi, K. Ito, T. Asano, H. Shinmoto et al., “A pilot study of photoacoustic imaging system for improved real-time visualization of neurovascular bundle during radical prostatectomy,” Prostate 76 (3), 307–315 (2016).

    [65] M. Ishihara, M. Shinchi, A. Horiguchi, H. Shinmoto, H. Tsuda, K. Irisawa, T. Wada, T. Asano, “Possibility of transrectal photoacoustic imaging-guided biopsy for detection of prostate cancer,” Proc. SPIE Photons Plus Ultrasound: Imaging and Sensing 2017, A. A. OraevskyL. V. Wang, Eds., pp. 100642U–100645, San Francisco, CA, USA (2017).

    [66] P. D. Agrba, M. Y. Kirillin, A. I. Abelevich, V. A. Kamensky, Mechanical compression for biotissue image enhancement in optical coherence tomography, Proc SPIE Saratov Fall Meeting 2009: International School for Junior Scientists and Students on Optics, Laser Physics, and Biophotonics, V. V. TuchinE. A. Genina, Eds., p. 754703, Saratov, Russian, Federation (2009).

    [67] J. Mobley, T. Vo-Dinh, “Optical properties of tissue,” Biomedical Photonics Handbook, CRC Press, Chapter 2.4, (2003), pp. 77–110.

    [68] M. A. L. Bell, N. P. Kuo, D. Y. Song, J. U. Kang, E. M. Boctor, “In vivo visualization of prostate brachytherapy seeds with photoacoustic imaging,” J. Biomed. Opt. 19 (12), 126011 (2014).

    [69] E. J. Kaplan, Brachytherapy seed, Google Patents, Patents publication #:US6746661B2.Retrieved from https://google.com/patents/US6746661, (2004).

    [70] M. A. L. Bell, N. Kuo, D. Y. Song, E. M. Boctor, “Short-lag spatial coherence beamforming of photoacoustic images for enhanced visualization of prostate brachytherapy seeds,” Biomed. Opt. Express 4 (10), 1964–1977 (2013).

    [71] D. J. Faber, E. G. Mik, M. C. G. Aalders, T. G. van Leeuwen, “Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography,” Opt. Lett. 28 (16), 1436–1438 (2003).

    [72] J. Folkman, Angiogenesis, Biology of Endothelial Cells, E. A. Jaffe, Ed., pp. 421–428, Springer, Boston, US (1984).

    [73] W. J. Huss, C. F. Hanrahan, R. J. Barrios, J. W. Simons, N. M. Greenberg, “Angiogenesis and prostate cancer: Identification of a molecular progression switch,” Cancer Res. 61 (6), 2736–2743 (2001).

    [74] S. S. Chang, D. S. O’Keefe, D. J. Bacich, V. E. Reuter, W. D. W. Heston, P. B. Gaudin, “Prostate-specific membrane antigen is produced in tumor-associated neovasculatur,” Clin. Cancer Res. 5 (10), 2674–2681 (1999).

    [75] M. K. Brawer, R. E. Deering, M. Brown, S. D. Preston, S. A. Bigler, “Predictors of pathologic stage in prostatic carcinoma: The role of neovascularity,” Cancer 73 (3), 678–687 (1994).

    [76] P. Carmeliet, R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407 (6801), 249–257 (2000).

    [77] M. W. Dewhirst, E. J. Ozimek, J. Gross, T. C. Cetas, “Will hyperthermia conquer the elusive hypoxic cell Implications of heat effects on tumor and normal-tissue microcirculation,” Radiology 137 (3), 811–817 (1980).

    [78] L. V. Wang, H.-I. Wu, Photoacoustic tomography, Biomedical Optics, pp. 283–321, John Wiley & Sons, (2009).

    [79] D. Yang, D. Xing, Limited-view scanning photoacoustic imaging based on algebraic reconstruction techniques, Fourth Int. Conf. Photonics and Imaging in Biology and Medicine, K. XuQ. LuoD. XingA. V. PriezzhevV. V. Tuchin, Eds., p. 604701, Tianjin china (2005).

    [80] J. Gamelin, A. Aguirre, A. Maurudis, L. V. Wang, Q. Zhu, Improvements in time resolution of tomographic photoacoustic imaging using a priori information for multiplexed systems, Proc. SPIE Photons Plus Ultrasound: Imaging and Sensing 2009, A. A. OraevskyL. V. Wang, Eds., pp. 71771C–71712, SanJose, CA (2009).

    [81] D. R. Bauer, R. Olafsson, L. G. Montilla, R. S. Witte, “3-D photoacoustic and pulse echo imaging of prostate tumor progression in the mouse window chamber,” J. Biomed. Opt. 16 (2), 026012 (2011).

    [82] A. Roggan, M. Friebel, K. Dorschel, A. Hahn, G. Muller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4 (1), 36–46 (1999).

    [83] V. S. Dogra, B. K. Chinni, K. S. Valluru, J. V. Joseph, A. Ghazi, J. L. Yao, K. Evans, E. M. Messing, N. A. Rao, “Multispectral photoacoustic imaging of prostate cancer: Preliminary ex vivo results,” J. Clin. Imaging Sci. 3, 41 (2013).

    [84] R. E. Kumon, C. X. Deng, X. Wang, Spectrum analysis of photoacoustic imaging data from prostate adenocarcinoma tumors in a murine model, Proc SPIE Photons Plus Ultrasound: Imaging and Sensing 2011, A. A. OraevskyL. V. Wang, Eds., pp. 78993Q–78996, San Francisco, CA, USA (2011).

    [85] B. T. Cox, S. R. Arridge, P. C. Beard, “Estimating chromophore distributions from multiwavelength photoacoustic images,” J. Opt. Soc. Am. A 26 (2), 443–455 (2009).

    [86] M. Milosevic, P. Chung, C. Parker, R. Bristow, A. Toi, T. Panzarella, P. Warde, C. Catton, C. Menard, A. Bayley et al., “Androgen withdrawal in patients reduces prostate cancer hypoxia: Implications for disease progression and radiation response,” Cancer Res. 67 (13), 6022–6025 (2007).

    [87] R. E. Kumon, C. X. Deng, X. Wang, “Frequency-domain analysis of photoacoustic imaging data from prostate adenocarcinoma tumors in a murine model,” Ultrasound Med. Biol. 37 (5), 834–839 (2011).

    [88] S. Sinha, N. A. Rao, B. K. Chinni, V. S. Dogra, “Evaluation of frequency domain analysis of a multiwavelength photoacoustic signal for differentiating malignant from benign and normal prostates: Ex vivo study with human prostates,” J. Ultrasound Med. 35 (10), 2165–2177 (2016).

    [89] M. P. Patterson, C. B. Riley, M. C. Kolios, W. M. Whelan, “Optoacoustic characterization of prostate cancer in an in vivo transgenic murine model,” J. Biomed. Opt. 19 (5), 056008 (2014).

    [90] B. Cox, J. G. Laufer, S. R. Arridge, P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: A review,” J. Biomed. Opt. 17 (6), 0612021–06120222 (2012).

    [91] J. Levi, A. Sathirachinda, S. S. Gambhir, “A high-affinity, high-stability photoacoustic agent for imaging gastrin-releasing peptide receptor in prostate cancer,” Clin. Cancer Res. 20 (14), 3721–3729 (2014).

    [92] V. Dogra, B. Chinni, S. Singh, H. Schmitthenner, N. Rao, J. J. Krolewski, K. L. Nastiuk, “Photoacoustic imaging with an acoustic lens detects prostate cancer cells labeled with PSMA-targeting near-infrared dye-conjugates,” J. Biomed. Opt. 21 (6), 66019 (2016).

    [93] A. Agarwal, S. W. Huang, M. O’Donnell, K. C. Day, M. Day, N. Kotov, S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102 (6), 064701 (2007).

    [94] G. Xu, M. Qin, A. Mukundan, J. Siddiqui, M. Takada, P. Vilar-Saavedra, S. A. Tomlins, R. Kopelman, X. Wang, Prostate cancer characterization by optical contrast enhanced photoacoustics. Proc SPIE Photons Plus Ultrasound: Imaging and Sensing 2016, A. A. OraevskyL. V. Wang, Eds., pp. 97080I–97086, San Francisco, CA, USA (2016).

    [95] R. Markwalder, J. C. Reubi, “Gastrin-releasing peptide receptors in the human prostate: Relation to neoplastic transformation,” Cancer Res. 59 (5), 1152–1159 (1999).

    [96] A. Ghosh, W. D. W. Heston, “Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer,” J. Cell. Biochem. 91 (3), 528–539 (2004).

    [97] N. A. Rao, D. Lai, S. Bhatt, S. C. Arnold, B. Chinni, V. S. Dogra, “Acoustic lens characterization for ultrasound and photoacoustic C-scan imaging modalities,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008, 2177–2180 (2008).

    [98] M. Derenzini, V. Sirri, D. Trere, R. L. Ochs, “The quantity of nucleolar proteins nucleolin and protein B23 is related to cell doubling time in human cancer cells,” Lab. Invest. 73 (4), 497–502 (1995).

    [99] Y. Otake, S. Soundararajan, T. K. Sengupta, E. A. Kio, J. C. Smith, M. Pineda-Roman, R. K. Stuart, E. K. Spicer, D. J. Fernandes, “Overexpression of nucleolin in chronic lymphocytic leukemia cells induces stabilization of bcl-2 mRNA,” Blood, 109(7), 3069–75 (2006).

    [100] S. S. Gambhir, S. R. Kothapalli, Photoacoustic Imaging (PAI) of the Prostate: A Clinical Feasibility Study. ClincialTrails.gov (2014), Retrieved from https://clinicaltrials.gov/show/NCT01551576.

    [101] J. Zhong, L. Wen, S. Yang, L. Xiang, Q. Chen, D. Xing, “Imaging-guided high-efficient photoacoustic tumor therapy with targeting gold nanorods,” Nanomedicine 11 (6), 1499–1509 (2015).

    [102] J. Xia, C. Kim, J. F. Lovell, “Opportunities for photoacoustic-guided drug delivery,” Curr. Drug targets 16 (6), 571–581 (2015).

    [103] S. Kim, Y.-S. Chen, G. P. Luke, S. Y. Emelianov, “In vivo three-dimensional spectroscopic photoacoustic imaging for monitoring nanoparticle delivery,” Biomed. Opt. Express 2 (9), 2540–2550 (2011).

    [104] K. Homan, J. Shah, S. Gomez, H. Gensler, A. Karpiouk, L. Brannon-Peppas, S. Emelianov, “Silver nanosystems for photoacoustic imaging and image-guided therapy,” J. Biomed. Opt. 15 (2), 021316-021316-021319 (2010).

    [105] C. M. Moore, D. Pendse, M. Emberton, “Photodynamic therapy for prostate cancer — A review of current status and future promise,” Nat. Clin. Pract. Urol. 6 (1), 18–30 (2009).

    [106] L. Xiang, D. Xing, H. Gu, D. Yang, S. Yang, L. Zeng, W. R. Chen, “Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor,” J. Biomed. Opt. 12 (1), 014001 (2007).

    [107] X. Huang, M. A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1 (1), 13–28 (2010).

    [108] J. Yuan, X. Yi, F. Yan, F. Wang, W. Qin, G. Wu, X. Yang, C. Shao, L. W. Chung, “Nearinfrared fluorescence imaging of prostate cancer using heptamethine carbocyanine dyes,” Mol. Med. Rep. 11 (2), 821–828 (2015).

    [109] R. Bouchard, O. Sahin, S. Emelianov, “Ultrasound-guided photoacoustic imaging: Current state and future development,” IEEE Trans. Ultrason. Ferroelect. Freq. Control 61 (3), 450–466 (2014).

    Xuanjin Yang, Liangzhong Xiang. Photoacoustic imaging of prostate cancer[J]. Journal of Innovative Optical Health Sciences, 2017, 10(4): 1730008
    Download Citation