[1] S. W. Hell. Far-field optical nanoscopy. Science, 316, 1153-1158(2007).
[2] R. Heintzmann, M. G. Gustafsson. Subdiffraction resolution in continuous samples. Nat. Photonics, 3, 362-364(2009).
[3] M. J. Rust, M. Bates, X. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3, 793-796(2006).
[4] E. Betzig et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).
[5] F. Bottanelli et al. Two-colour live-cell nanoscale imaging of intracellular targets. Nat. Commun., 7, 10778(2016).
[6] J. Chojnacki et al. Envelope glycoprotein mobility on HIV-1 particles depends on the virus maturation state. Nat. Commun., 8, 545(2017).
[7] W. Shin et al. Visualization of membrane pore in live cells reveals a dynamic-pore theory governing fusion and endocytosis. Cell, 173, 934-945.e12(2018).
[8] Y. Ma, T. Ha. Fight against background noise in stimulated emission depletion nanoscopy. Phys. Biol., 16, 051002(2019).
[9] C. Li et al. Resolution enhancement and background suppression in optical super-resolution imaging for biological applications. Laser Photonics Rev., 15, 1900084(2020).
[10] G. Vicidomini et al. STED with wavelengths closer to the emission maximum. Opt. Express, 20, 5225-5236(2012).
[11] I. C. Hernandez et al. A new filtering technique for removing anti-Stokes emission background in gated CW-STED microscopy. J. Biophotonics, 7, 376-380(2014).
[12] M. D. Bordenave et al. STED nanoscopy with wavelengths at the emission maximum. J. Phys. D Appl. Phys., 49, 365102(2016).
[13] M. Castello et al. Removal of anti-Stokes emission background in STED microscopy by FPGA-based synchronous detection. Rev. Sci. Instrum., 88, 053701(2017).
[14] J. Hanne et al. STED nanoscopy with fluorescent quantum dots. Nat. Commun., 6, 7127(2015).
[15] P. Gao et al. Background suppression in fluorescence nanoscopy with stimulated emission double depletion. Nat. Photonics, 11, 163-169(2017).
[16] P. Gao, G. U. Nienhaus. Precise background subtraction in stimulated emission double depletion nanoscopy. Opt. Lett., 42, 831-834(2017).
[17] J. C. Lee et al. Accurate background subtraction in STED nanoscopy by polarization switching. ACS Photonics, 6, 1789-1797(2019).
[18] E. Ronzitti, B. Harke, A. Diaspro. Frequency dependent detection in a STED microscope using modulated excitation light. Opt. Express, 21, 210-219(2013).
[19] C. Y. Fan et al. All-optical fluorescence image recovery using modulated stimulated emission depletion. Chem. Sci., 2, 1080-1085(2011).
[20] S. Das et al. Background free imaging in stimulated emission fluorescence microscopy. J. Opt., 21, 125301(2019).
[21] L. Lanzano et al. Encoding and decoding spatio-temporal information for super-resolution microscopy. Nat. Commun., 6, 6701(2015).
[22] M. J. Sarmento et al. Exploiting the tunability of stimulated emission depletion microscopy for super-resolution imaging of nuclear structures. Nat. Commun., 9, 3415(2018).
[23] L. Wang et al. Resolution improvement in STED super-resolution microscopy at low power using a phasor plot approach. Nanoscale, 10, 16252-16260(2018).
[24] G. Tortarolo et al. Photon-separation to enhance the spatial resolution of pulsed STED microscopy. Nanoscale, 11, 1754-1761(2019).
[25] Y. Chen et al. Elimination of re-excitation in stimulated emission depletion nanoscopy based on photon extraction in a phasor plot. Laser Photonics Rev., 14, 1900352(2020).
[26] S. Pelicci et al. Improving SPLIT-STED super-resolution imaging with tunable depletion and excitation power. J. Phys. D Appl. Phys., 53, 234003(2020).
[27] W. Min et al. Coherent nonlinear optical imaging: beyond fluorescence microscopy. Annu. Rev. Phys. Chem., 62, 507-530(2011).
[28] S. Ye et al. Low-saturation-intensity, high-photostability, and high-resolution STED nanoscopy assisted by CsPbBr3 quantum dots. Adv. Mater., 30, 1800167(2018). https://doi.org/10.1002/adma.201800167
[29] B. Yang et al. Optical nanoscopy with excited state saturation at liquid helium temperatures. Nat. Photonics, 9, 658-662(2016).
[30] X. D. Chen et al. Subdiffraction optical manipulation of the charge state of nitrogen vacancy center in diamond. Light-Sci. Appl., 4, e230(2015).
[31] K. Y. Han et al. Metastable dark states enable ground state depletion microscopy of nitrogen vacancy centers in diamond with diffraction-unlimited resolution. Nano Lett., 10, 3199-3203(2010).
[32] C. Eggeling, A. Volkmer, C. A. Seidel. Molecular photobleaching kinetics of rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy. ChemPhysChem, 6, 791-804(2005).
[33] C. Ringemann et al. Enhancing fluorescence brightness: effect of reverse intersystem crossing studied by fluorescence fluctuation spectroscopy. ChemPhysChem, 9, 612-624(2008).
微信里点“发现”,扫一下
二维码便可将本文分享至朋友圈。
Set citation alerts for the article
Please enter your email address
CancelConfirm