[1] M BEKKER. G. Theory of Land Locomotion(1956).
[2] J Y WONG. Terramechanics and off-Road Vehicle Engineering. ELSEVIER(2010).
[3] R D WISMER, H J LUTH. Off-road traction prediction for wheeled vehicles. Journal of Terramechanics, 10, 49-61(1973).
[4] M OBERMAYR, K DRESSLER, C VRETTOS et al. Prediction of draft forces in cohesionless soil with the Discrete Element Method. Journal of Terramechanics, 48, 347-358(2011).
[5] 5邹猛, 李建桥, 贾阳, 等. 月壤静力学特性的离散元模拟[J]. 吉林大学学报(工学版), 2008, 38(2): 383-387.ZOUM, LIJ Q, JIAY, et al. Statics characteristics of lunar soil by DEM simulation[J]. Journal of Jilin University (Engineering and Technology Edition), 2008, 38(2): 383-387.(in Chinese)
[6] 6高峰, 李雯, 孙刚, 等. 模拟月壤可行驶性的离散元数值分析[J]. 北京航空航天大学学报, 2009, 35(4): 501-504, 513.GAOF, LIW, SUNG, et al. Numerical analysis on travelability of lunar soil simulant by means of distinct element method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(4): 501-504, 513.(in Chinese)
[7] J WONG. The Theory of Ground Vehicles-3rd Edition(2001).
[8] J Y WONG, A R REECE. Prediction of rigid wheel performance based on the analysis of soil-wheel stresses: part I. Performance of diren rigid wheels. Journal of Terramechanics, 4, 81-98(1967).
[9] J Y WONG, A R REECE. Prediction of rigid wheel performance based on the analysis of soil-wheel stresses: part II. Performance of towed rigid wheels. Journal of Terramechanics, 4, 7-25(1967).
[10] D F BLAKE, R V MORRIS, G KOCUREK et al. Curiosity at Gale crater, Mars: characterization and analysis of the Rocknest sand shadow. Science, 341, 1239505(2013).
[11] R TEAM. Characterization of the Martian surface deposits by the Mars pathfinder rover, sojourner. Science, 278, 1765-1768(1997).
[12] R SULLIVAN, R ANDERSON, J BIESIADECKI et al. Cohesions, friction angles, and other physical properties of Martian regolith from Mars Exploration Rover wheel trenches and wheel scuffs. Journal of Geophysical Research: Planets, 116, E02006(2011).
[13] R E ARVIDSON, R C ANDERSON, P BARTLETT et al. Localization and physical properties experiments conducted by Spirit at Gusev Crater. Science, 305, 821-824(2004).
[14] R E ARVIDSON, R G BONITZ, M L ROBINSON et al. Results from the Mars phoenix lander robotic arm experiment. Journal of Geophysical Research: Planets, 114, E00-02(2009).
[15] WiKIPEDIA. Phoenix(spacecraft). WiKIPEDIA. https://en.wikipedia.org/wiki/Phoenix_(spacecraft)
[16] L DING, R ZHOU, T YU et al. Surface characteristics of the Zhurong Mars rover traverse at utopia planitia. Nature Geoscience, 15, 171-176(2022).
[17] K IAGNEMMA, S KANG, H SHIBLY et al. Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers. IEEE Transactions on Robotics, 20, 921-927(2004).
[18] K IAGNEMMA, S KANG, C BROOKS et al. Multi-sensor terrain estimation for planetary rovers, 1-8(2003).
[19] K IAGNEMMA, H SHIBLY, S DUBOWSKY. On-line terrain parameter estimation for planetary rovers, 3142-3147(2002).
[20] H SHIBLY, K IAGNEMMA, S DUBOWSKY. An equivalent soil mechanics formulation for rigid wheels in deformable terrain, with application to planetary exploration rovers. Journal of Terramechanics, 42, 1-13(2005).
[21] M CROSS, A ELLERY, A QADI. Estimating terrain parameters for a rigid wheeled rover using neural networks. Journal of Terramechanics, 50, 165-174(2013).
[22] S HUTANGKABODEE, Y H ZWEIRI, L D SENEVIRATNE et al. Soil parameter identification for wheel-terrain interaction dynamics and traversability prediction. International Journal of Automation and Computing, 3, 244-251(2006).
[23] L SENEVIRATNE, Y ZWEIRI, S HUTANGKABODEE et al. The modelling and estimation of driving forces for unmanned ground vehicles in outdoor terrain. International Journal of Modelling, Identification and Control, 6, 40(2009).
[25] A ELLERY. Planetary Rovers: Robotic Exploration of the Solar System, 61-63(2015).
[26] 26邸凯昌. 勇气号和机遇号火星车定位方法评述[J]. 航天器工程, 2009, 18(5): 1-5. doi: 10.3969/j.issn.1673-8748.2009.05.001DIK C. A review of spirit and opportunity rover localization methods[J]. Spacecraft Engineering, 2009, 18(5): 1-5.(in Chinese). doi: 10.3969/j.issn.1673-8748.2009.05.001
[27] M MAIMONE, Y CHENG, L MATTHIES. Two years of visual odometry on the Mars exploration rovers. Journal of Field Robotics, 24, 169-186(2007).
[28] A E JOHNSON, S B GOLDBERG, Y CHENG et al. Robust and efficient stereo feature tracking for visual odometry, 39-46(2008).
[29] J CARSTEN, A RANKIN, D FERGUSON et al. Global path planning on board the Mars exploration rovers, 1-11(2007).
[30] J CALLAS. Mars exploration rover spirit end of mission report(2015).
[31] R E ARVIDSON, K D IAGNEMMA, M MAIMONE et al. Mars science laboratory curiosity rover megaripple crossings up to Sol 710 in gale crater. Journal of Field Robotics, 34, 495-518(2017).
[32] M HEVERLY, J MATTHEWS, J LIN et al. Traverse performance characterization for the Mars science laboratory rover. Journal of Field Robotics, 30, 835-846(2013).
[33] J J BIESIADECKI, E T BAUMGARTNER, R G BONITZ et al. Mars Exploration Rover surface operations: driving opportunity at Meridiani Planum, 1823-1830(2005).
[34] T J FUCHS, A STEFFY et al. Risk-aware planetary rover operation: autonomous terrain classification and path planning, 1-10(2015).
[35] R A YINGST, K CROPPER, S GUPTA et al. Characteristics of pebble and cobble-sized clasts along the Curiosity rover traverse from Sol 100 to 750: terrain types, potential sources, and transport mechanisms. Icarus, 280, 72-92(2016).
[37] F ZHOU, R E ARVIDSON, K BENNETT et al. Simulations of Mars rover traverses. Journal of Field Robotics, 31, 141-160(2014).
[39] R E ARVIDSON, P DEGROSSE, J P GROTZINGER et al. Relating geologic units and mobility system kinematics contributing to Curiosity wheel damage at Gale Crater, Mars. Journal of Terramechanics, 73, 73-93(2017).
[40] C SENATORE, N STEIN, F ZHOU et al. Modeling and validation of mobility characteristics of the mars science laboratory curiosity rover(2014).
[41] C WHITE, G ANTOUN, P BRUGAROLAS et al. System verification of MSL Skycrane using an integrated ADAMS simulation, 1-11(2012).
[49] 49张京男, 徐菁. 美国“毅力”火星车机械结构设计原理[J]. 中国航天, 2020(8): 32-37. doi: 10.3969/j.issn.1002-7742.2020.08.007ZHANGJ N, XUJ. Design principles of perseverance rover mechanical structure[J]. Aerospace China, 2020(8): 32-37.(in Chinese). doi: 10.3969/j.issn.1002-7742.2020.08.007
[51] 51袁宝峰, 王成恩, 邹猛, 等. 火星车主动悬架设计及蠕动脱困策略[J]. 吉林大学学报(工学版), 2021, 51(1): 154-162. doi: 10.13229/j.cnki.Jdxbgxb20200604YUANB F, WANGC G, ZOUM, et al. Design active suspension system and creeping control strategy for Mars rover of China[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(1): 154-162.(in Chinese). doi: 10.13229/j.cnki.Jdxbgxb20200604
[52] 52潘冬, 陈朕, 袁宝峰, 等. 火星车沉陷机理与脱困策略研究[J]. 机器人, 2022, 44(1): 2-8.PAND, CHENZ, YUANB F, et al. Sinkage mechanism and extrication strategy of Mars rover[J]. Robot, 2022, 44(1): 2-8.(in Chinese)
[53] P R CHRISTENSEN, H Y MCSWEEN, J L BANDFIELD et al. Evidence for magmatic evolution and diversity on Mars from infrared observations. Nature, 436, 504-509(2005).
[54] R E ARVIDSON, J W ASHLEY, III J F BELL et al. Opportunity Mars Rover mission: overview and selected results from Purgatory ripple to traverses to Endeavour crater. Journal of Geophysical Research: Planets, 116(2011).
[55] E SEBASTIÁN, C ARMIENS, J GÓMEZ-ELVIRA et al. The Rover Environmental Monitoring Station Ground Temperature Sensor: a pyrometer for measuring ground temperature on Mars. Sensors (Basel, Switzerland), 10, 9211-9231(2010).
[56] J PÉREZ-IZQUIERDO, E SEBASTIÁN, GM MARTÍNEZ et al. The Thermal Infrared Sensor (TIRS) of the Mars Environmental Dynamics Analyzer (MEDA) instrument onboard Mars 2020, a general description and performance analysis. Measurement, 122, 432-442(2018).
[57] A J PARSONS, A D ABRAHAMS. Geomorphology of Desert Environments, 3-12(1994).
[58] S CHHANIYARA, C BRUNSKILL, B YEOMANS et al. Terrain trafficability analysis and soil mechanical property identification for planetary rovers: a survey. Journal of Terramechanics, 49, 115-128(2012).
[59] V G RANGARAJAN, R BHARTI, S K MONDAL et al. Remote sensing for Martian studies: inferences from syrtis major. Journal of the Indian Society of Remote Sensing, 46, 1537-1551(2018).
[60] C CUNNINGHAM, I NESNAS, W L WHITTAKER. Terrain traversability prediction by imaging thermal transients, 3947-3952(2015).
[61] C CUNNINGHAM, I A NESNAS, W L WHITTAKER. Improving slip prediction on Mars using thermal inertia measurements. Autonomous Robots, 43, 503-521(2019).
[62] Y IWASHITA, K NAKASHIMA, J GATTO et al. Virtual IR sensing for planetary rovers: improved terrain classification and thermal inertia estimation. IEEE Robotics and Automation Letters, 5, 6302-6309(2020).
[63] C CUNNINGHAM, W WHITTAKER, I NESNAS. Detecting loose regolith in lunar craters using thermal imaging, 16-26(2016).
[64] S HIGA, Y IWASHITA, K OTSU et al. Vision-based estimation of driving energy for planetary rovers using deep learning and terramechanics. IEEE Robotics and Automation Letters, 4, 3876-3883(2019).
[65] T PEYNOT, S SUKKARIEH. Nonparametric traversability estimation in partially occluded and deformable terrain. Journal of Field Robotics, 33, 1131-1158(2016).
[66] B ROTHROCK, R KENNEDY, C CUNNINGHAM et al. SPOC: deep learning-based terrain classification for Mars rover missions, 5539-16(2016).
[67] K SKONIECZNY, D K SHUKLA, M FARAGALLI et al. Data-driven mobility risk prediction for planetary rovers. Journal of Field Robotics, 36, 475-491(2019).