• Laser & Optoelectronics Progress
  • Vol. 53, Issue 12, 121401 (2016)
[in Chinese]1、*, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1, and [in Chinese]1、2、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/lop53.121401 Cite this Article Set citation alerts
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Influence of Supercontinuum Laser on Bioluminescence Imaging Technology[J]. Laser & Optoelectronics Progress, 2016, 53(12): 121401 Copy Citation Text show less
    References

    [1] Choy G, O′connor S, Diehn F E, et al. Comparison of noninvasive fluorescent and bioluminescent small animal optical imaging[J]. BioTechniques, 2003, 35(5): 1022-1030.

    [2] Kiessling F, Pichler B J. Small animal imaging: Basics and practical guide[M]. Germany: Springer Science+Business Media, 2011.

    [3] Pomper M G, Lee J S. Small animal imaging in drug development[J]. Current Pharmaceutical Design, 2005, 11(25): 3247-3272.

    [4] Guo Hongbo, He Xiaowei, Hou Yuqing, et al. Fluorescence molecular tomography based on nonconvex sparse regularization[J]. Acta Optica Sinica, 2015, 35(7): 0717001.

    [5] Li Zuanfang, Huang Zufang, Chen Rong, et al. Two-photon fluorescence imaging of thyroid tissue[J]. Chinese J Lasers, 2009, 36(3): 765-768.

    [6] Wang Jincheng, Kuang Cuifang, Wang Yifan, et al. Multispectral fluorescence microscopic imaging based on compressive sensing[J]. Chinese J Lasers, 2013, (12): 1204003.

    [7] Chang Jian, Zhang Yunhai, Zhang Xin, et al. Application of laser scanning confocal technology in near infrared fluorescence imaging[J]. Laser & Optoelectronics Progress, 2014, 51(11): 111702.

    [8] Wang Mao, Li Chunyan, Sun Yunfei, et al. Research of near-infrared small living animal fluoresence imaging system[J]. Acta Optica Sinica, 2013 (6): 0617003.

    [9] Leavesley S, Jiang Y, Patsekin V, et al. An excitation wavelength-scanning spectral imaging system for preclinical imaging[J]. Review of Scientific Instruments, 2008, 79(2): 023707.

    [10] Levenson R M, Lynch D T, Kobayashi H, et al. Multiplexing with multispectral imaging: From mice to microscopy[J]. ILAR Journal, 2008, 49(1): 78-88.

    [11] Levenson R M, Mansfield J R. Multispectral imaging in biology and medicine: Slices of life[J]. Cytometry, Part A, 2006, 69(8): 748-758.

    [12] Mayes P A, Dicker D T, Liu Y Y, et al. Noninvasive vascular imaging in fluorescent tumors using multispectral unmixing[J]. BioTechniques, 2008, 45(4): 459-464.

    [13] Yang M, Jiang P, Hoffman R M. Whole-body subcellular multicolor imaging of tumor-host interaction and drug response in real time[J]. Cancer Research, 2007, 67(11): 5195-5200.

    [14] Yang M, Jiang P, Hoffman R M. Whole-body subcellular multicolor imaging[C]. SPIE, 2007, 6449: 64490V.

    [15] Weissleder R. Scaling down imaging molecular mapping of cancer in mice[J]. Nature Reviews Cancer, 2002, 2(1): 11-18.

    [16] Hoffman R M. Imaging in mice with fluorescent proteins: From macro to subcellular[J]. Sensors, 2008, 8(2): 1157-1173.

    [17] Shaner N C, Steinbach P A, Tsien R Y. A guide to choosing fluorescent proteins[J]. Nature Methods, 2005, 2(12): 905-909.

    [18] Shcherbo D, Merzlyak E M, Chepurnykh T V, et al. Bright far-red fluorescent protein for whole-body imaging[J]. Nature Methods, 2007, 4(9): 741-746.

    [19] Chen Y P, Xiong T X, Yu L, et al. Whole-body fluorescent optical imaging based on power light emitting diode[C]. Engineering in Medicine and Biology 27th Annual Conference, 2005: 1442-1445.

    [20] Yang M, Luiken G, Baranov E, et al. Facile whole-body imaging of internal fluorescent tumors in mice with an LED flashlight[J]. BioTechniques, 2005, 39(2): 170-172.

    [21] Shcherbo D, Murphy C S, Ermakova G V, et al. Far-red fluorescent tags for protein imaging in living tissues[J]. Biochememical Journal, 2009, 418(3): 567-574.

    [22] Weissleder R. A clearer vision for in vivo imaging[J]. Nature Biotechnology, 2001, 19: 316-317.

    [23] Chen Shengping, Chen Hongwei, Hou Jing, et al. 30 W picosecond pulsed fiber laser and high power supercontinuum generation[J]. Chinese J Lasers, 2010, 37(8): 1943-1949.

    [24] Jia Dongfang, Ge Chunfeng, Hu Zhiyong, et al. Studies on supercontinuum generation in dispersion shifted fiber by using mode-locked fiber laser[J]. Acta Optica Sinica, 2005, 25(6): 746-750.

    [25] Leblond F, Davis S C, Valdés P A, et al. Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications[J]. Journal of Photochemistry and Photobiology B: Biology, 2010, 98(1): 77-94.

    [26] Bindhu C V, Harilal S S. Effect of the excitation source on the quantum-yield measurements of rhodamin B laser dye studied using thermal-lens technique[J]. Analytical Sciences, 2001, 17(1): 141-144.

    [27] Donnert G, Eggeling C, Hell S W. Major signal increase in fluorescence microscopy through dark-state relaxation[J]. Nature Methods, 2007, 4: 81-86.

    CLP Journals

    [1] Li Yu, Liao Meisong, Xue Tianfeng, Bei Jiafang, Hu Lili, Zhang Long. Research Progress of Mid-Infrared Supercontinuum in Soft Glass Fiber[J]. Laser & Optoelectronics Progress, 2018, 55(8): 80001

    [2] Liwen Jiang, Xuqing Sun, Hongyao Liu, Yaqin Chen, Wei Xiong, Chaoqian Zhang, Xinchao Lu. Single Nanoparticle Label-Free Imaging Based on Evanescent Wave In-Plane Scattering[J]. Acta Optica Sinica, 2018, 38(6): 0624001

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Influence of Supercontinuum Laser on Bioluminescence Imaging Technology[J]. Laser & Optoelectronics Progress, 2016, 53(12): 121401
    Download Citation