• Laser & Optoelectronics Progress
  • Vol. 55, Issue 1, 12401 (2018)
Zhao Jing1, Wang Jiaxian1、*, Qiu Weibin2, Qiu Pingping2, Ren Junbo2, and Lin Zhili2
Author Affiliations
  • 1Academy of Electronic Information and Electrical Engineering, Xiamen Institute of Technology, Xiamen, Fujian 361021, China
  • 2College of Information Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China
  • show less
    DOI: 10.3788/LOP55.012401 Cite this Article Set citation alerts
    Zhao Jing, Wang Jiaxian, Qiu Weibin, Qiu Pingping, Ren Junbo, Lin Zhili. Surface Plasmonic Polariton Band-Stop Filters Based on Graphene[J]. Laser & Optoelectronics Progress, 2018, 55(1): 12401 Copy Citation Text show less
    References

    [1] Soref R. Mid-infrared photonics in silicon and germanium[J]. Nature Photonics, 4, 495-497(2010). http://www.nature.com/nphoton/journal/v4/n8/abs/nphoton.2010.171.html

    [2] Macdonald J R, Beecher S J, Berry P A et al. Compact mid-infrared Cr∶ZnSe channel waveguide laser[J]. Applied Physics Letters, 102, 161110(2013). http://scitation.aip.org/content/aip/journal/apl/102/16/10.1063/1.4803058

    [3] Li Z Y, Tan R Q, Huang W et al. Methane pressure detection based on Fourier transform infrared spectroscopy[J]. Chinese Journal of Lasers, 44, 0301006(2017).

    [4] Stanley R. Plasmonics in the mid-infrared[J]. Nature Photonics, 6, 409-411(2012). http://www.nature.com/nphoton/journal/v6/n7/full/nphoton.2012.161.html

    [5] Low T, Avouris P. Graphene plasmonics for terahertz to mid-infrared applications[J]. ACS Nano, 2, 1086-1101(2014). http://pubs.acs.org/doi/abs/10.1021/nn406627u

    [6] Brar V W, Jang M S, Sherrott M et al. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators[J]. Nano Letters, 13, 2541-2547(2013). http://pubs.acs.org/doi/abs/10.1021/nl400601c

    [7] Zhu C H, Tan C, Wang Y et al. Research on high sensitivity temperature and magnetic field sensor based on surface plasmon resonance and mode coupling in photonic crystal fibers[J]. Chinese Journal of Lasers, 44, 0310001(2017).

    [8] Fei Z, Rodin A S, Andreev G O et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging[J]. Nature, 487, 82-85(2012). http://europepmc.org/abstract/MED/22722866

    [9] Chen J, Badioli M, Alonso-González P et al. Optical nano-imaging of gate-tunable graphene plasmons[J]. Nature, 487, 77-81(2012). http://www.nature.com/nature/journal/v487/n7405/nature11254/metrics

    [10] Koppens F H, Chang D E. Garciade Abajo F J. Graphene plasmonics: a platform for strong light-matter interactions[J]. Nano Letters, 11, 3370-3377(2011).

    [11] Chu H, How Gan C. Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays[J]. Applied Physics Letters, 102, 231107(2013). http://scitation.aip.org/content/aip/journal/apl/102/23/10.1063/1.4810003

    [12] Yang L, Pei C, Shen A et al. An all-optical modulation method in sub-micron scale[J]. Scientific Reports, 5, 9206-9206(2015). http://links.ealert.nature.com/ctt?kn=92&ms=NDgyOTQzODMS1&r=ODkwMTM2NjQzMgS2&b=0&j=NjQzMDM3MzU5S0&mt=1&rt=0

    [13] Liu Y Z, Zhang Y P, Cao Y Y et al. Modulator of tunable modulation depth based on graphene metamaterial[J]. Acta Optica Sinica, 36, 1016002(2016).

    [14] Gao Y, Ren G, Zhu B et al. Tunable plasmonic filter based on graphene split-ring[J]. Plasmonics, 11, 291-296(2016). http://link.springer.com/article/10.1007/s11468-015-0050-z

    [15] Wei Z, Li X, Yin J et al. Active plasmonic band-stop filters based on graphene metamaterial at THz wavelengths[J]. Optics Express, 24, 14344-14351(2016). http://europepmc.org/abstract/med/27410588

    [16] Shi B, Cai W, Zhang X et al. Tunable band-stop filters for graphene plasmons based on periodically modulated graphene[J]. Scientific Reports, 6, 26796-26796(2016). http://www.nature.com/articles/srep26796

    [17] Ju L, Geng B, Horng J et al. Graphene plasmonics for tunable terahertz metamaterials[J]. Nature Nanotechnology, 6, 630-634(2011). http://www.nature.com/nnano/journal/v6/n10/abs/nnano.2011.146.html

    [18] Nikitin A Y, Guinea F. Garcia-Vidal F J, et al. Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons[J]. Physical Review B, 85, 081405(2012). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000025000010000060000001&idtype=cvips&gifs=Yes

    [19] Zhao J, Liu X, Qiu W et al. Surface-plasmon-polariton whispering-gallery mode analysis of the graphene monolayer coated InGaAs nanowire cavity[J]. Optics Express, 22, 5754-5761(2014). http://www.ncbi.nlm.nih.gov/pubmed/24663913

    [20] Qiu W, Liu X, Zhao J et al. Nanofocusing of mid-infrared electromagnetic waves on graphene monolayer[J]. Applied Physics Letters, 104, 041109(2014). http://scitation.aip.org/content/aip/journal/apl/104/4/10.1063/1.4863926

    [21] Wang B, Zhang X, Yuan X et al. Optical coupling of surface plasmons between graphene sheets[J]. Applied Physics Letters, 100, 131111(2012). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6176100

    [22] Qiu P P, Qiu W B, Lin Z L et al. Energy-band structure and density of states of composite lattice two-dimensional graphene plasmon polariton crystals[J]. Laser & Optoelectronics Progress, 54, 052401(2017).

    [23] Hanson G W. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 103, 064302(2008). http://scitation.aip.org/content/aip/journal/jap/103/6/10.1063/1.2891452

    [24] Gusynin V P, Sharapov S G, Carbotte J P. Magneto-optical conductivity in graphene[J]. Journal of Physics: Condensed Matter, 19, 026222(2007). http://www.oalib.com/paper/3219254

    [25] Jablan M, Buljan H, Soljacic M. Plasmonics in graphene at infrared frequencies[J]. Physical Review B, 80, 245435(2009). http://www.nanoopt.org/literatureblog/56-graphene/1066-plasmonics-in-graphene-at-infrared-frequencies.html

    [26] Choi S, Jhi S, Son Y. Controlling energy gap of bilayer graphene by strain[J]. Nano Letters, 10, 3486-3489(2010). http://europepmc.org/abstract/MED/20677793

    [27] Liu J, Wright A R, Zhang C et al. Strong terahertz conductance of graphene nanoribbons under a magnetic field[J]. Applied Physics Letters, 93, 041106(2008). http://scitation.aip.org/content/aip/journal/apl/93/4/10.1063/1.2964093

    [28] Zhang Y, Tang T, Girit C et al. Direct observation of a widely tunable bandgap in bilayer graphene[J]. Nature, 459, 820-823(2009). http://www.ncbi.nlm.nih.gov/pubmed/19516337

    [29] Efetov D K, Kim P. Controlling electron-phonon interactions in graphene at ultrahigh carrier densities[J]. Physical Review Letters, 105, 256805(2010). http://pubs.acs.org/servlet/linkout?suffix=ref37/cit37&dbid=8&doi=10.1021%2Facsphotonics.5b00317&key=21231611

    [30] Yan X, Wang T, Han X et al. High sensitivity nanoplasmonic sensor based on plasmon-induced transparency in a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators[J]. Plasmonics, 12, 1449-1455(2016). http://link.springer.com/10.1007/s11468-016-0405-0

    Zhao Jing, Wang Jiaxian, Qiu Weibin, Qiu Pingping, Ren Junbo, Lin Zhili. Surface Plasmonic Polariton Band-Stop Filters Based on Graphene[J]. Laser & Optoelectronics Progress, 2018, 55(1): 12401
    Download Citation