• Acta Optica Sinica
  • Vol. 38, Issue 7, 0727001 (2018)
Yaoyao Zhou1、*, Juan Yu2, Zhihui Yan2, and Xiaojun Jia2
Author Affiliations
  • 1 Department of Physics, Taiyuan Normal University, Taiyuan, Shanxi 0 30031, China
  • 2 State Kay Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • show less
    DOI: 10.3788/AOS201838.0727001 Cite this Article Set citation alerts
    Yaoyao Zhou, Juan Yu, Zhihui Yan, Xiaojun Jia. Entanglement Source with High Entanglement Degree Based on Wedged Nonlinear Crystals[J]. Acta Optica Sinica, 2018, 38(7): 0727001 Copy Citation Text show less
    References

    [1] Furusawa A, Sorensen J L, Braustein S L et al. Unconditional quantum teleportation[J]. Science, 282, 706-709(1998).

    [2] Bouwmeester D, Pan J W, Mattle K et al. Experimental quantum teleportation[J]. Nature, 390, 575-579(1997).

    [3] Gottesman D, Preskill J. Secure quantum key distribution using squeezed states[J]. Physical Review A, 63, 022309(2001). http://prola.aps.org/abstract/PRA/v63/i2/e022309

    [4] Yukawa M, Benichi H, Furusawa A. High-fidelity continuous-variable quantum teleportation toward multi-step quantum operations[J]. Physical Review A, 77, 022314(2008). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PLRAAN000077000002022314000001&idtype=cvips&gifs=Yes

    [5] Li X Y, Pan Q, Jing J T et al. Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam[J]. Physical Review Letters, 88, 047904(2002). http://europepmc.org/abstract/MED/11801172

    [6] Jia X J, Su X L, Pan Q et al. Experimental demonstration of unconditional entanglement swapping for continuous variables[J]. Physical Review Letters, 93, 250503(2004). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT04000004000012000039000001&idtype=cvips&gifs=Yes

    [7] Mattle K, Weinfurter H, Kwiat P G et al. Dense coding in experimental quantum communication[J]. Physical Review Letters, 76, 4656-4659(1996). http://europepmc.org/abstract/med/10061348

    [8] Braunstein S L, Kimble H J. Densecoding for continuous variables[J]. Physical Review A, 61, 042302(2000). http://journals.aps.org/pra/abstract/10.1103/PhysRevA.61.042302

    [9] Zhang J, Peng K C. Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a Bell state[J]. Physical Review A, 62, 064302(2000).

    [10] Shor P W. Algorithms for quantum computing: Discrete log and factoring[C]. Proceedings of the 35th Annual Symposium on Foundations of Computer Science, 124-134(1994).

    [11] Shor P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM Journal on Computing, 26, 1484-1509(1997). http://dl.acm.org/citation.cfm?id=264406

    [12] Grover L K. Quantum computers can search rapidly by using almost any transformation[J]. Physical Review Letters, 80, 4329-4332(1998).

    [13] Zhao Y P, Hao S H, Su X L et al. Generation system of continuous-variable six-partite and eight-partite star cluster entangled states[J]. Acta Optica Sinica, 32, 0627002(2012).

    [14] Zhang M, Zhou Y Y, Li F et al. Realization of low threshold operation of NOPA with wedged KTP crystal[J]. Acta Optica Sinica, 34, 0327001(2014).

    [15] Li Q, Deng X W, Zhang Q et al. Experimental preparation of a pure two-mode squeezed state[J]. Acta Optica Sinica, 36, 0427001(2016).

    [16] Wu L, Liu Y H, Deng R J et al. Experimental preparation of bipartite polarization entangled optical fields at 795 nm[J]. Acta Optica Sinica, 37, 0527001(2017).

    [17] Peng K C, Jia X J, Su X L et al. Optical manipulations of quantum states with continuous variables[J]. Acta Optica Sinica, 31, 0900107(2011).

    [18] Jia X J, Su X L, Pan Q et al. Experimental generation of two EPR entangled states with classical coherence[J]. Acta Physica Sinica, 54, 2717-2722(2005).

    [19] Zhao C Y, Tan W H. Quantum fluctuations in the time-dependent linearly driven degenerate parametric amplification[J]. Acta Physica Sinica, 54, 4526-4531(2005).

    [20] Wang Y, Su X L, Shen H et al. Toward demonstrating controlled-X operation based on continuous-variable four-partite cluster states and quantum teleporters[J]. Physical Review A, 81, 022311(2010).

    [21] Ou Z Y, Pereira S F, Kimble H J et al. Realization of the Einstein-Podolsky-Rosen paradox for continuous variables[J]. Physical Review Letters, 68, 3663-3666(1992). http://www.ncbi.nlm.nih.gov/pubmed/10045765

    [22] Zhang Y, Wang H, Li X Y et al. Experimental generation of bright two-mode quadrature squeezed light from a narrow-band nondegenerate optical parametric amplifier[J]. Physical Review A, 62, 023813(2000).

    [23] Bowen W P, Schnabel R, Lam P K et al. Experimental characterization of continuous-variable entanglement[J]. Physical Review A, 69, 012304(2004). http://adsabs.harvard.edu/abs/2003quant.ph..9013B

    [24] Laurat J, Coudreau T, Keller G et al. Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies[J]. Physical Review A, 70, 042315(2004).

    [25] Takei N, Yonezawa H, Aoki T et al. High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables[J]. Physical Review Letters, 94, 220502(2005).

    [26] Wang Y, Shen H, Jin X L et al. Experimental generation of 6 dB continuous variable entanglement from a nondegenerate optical parametric amplifier[J]. Optics Express, 18, 6149-6155(2010).

    [27] Yan Z H, Jia X J, Su X L et al. Cascaded entanglement enhancement[J]. Physical Review A, 85, 040305(2012).

    [28] Zhou Y Y, Jia X J, Li F et al. Experimental generation of 8.4 dB entangled state with an optical cavity involving a wedged type-II nonlinear crystal[J]. Optics Express, 23, 4952-4959(2015).

    [29] Takeno Y, Yukawa M, Yonezawa H et al. Observation of -9 dB quadrature squeezing with improvement of phase stability in homodyne measurement[J]. Optics Express, 15, 4321-4327(2007).

    [30] Vahlbruch H, Mehmet M, Chelkowski S et al. Observation of squeezed light with 10-dB quantum-noise reduction[J]. Physical Review Letters, 100, 033602(2008). http://www.ncbi.nlm.nih.gov/pubmed/18232978?dopt=Abstract

    [31] Duan L M, Giedke G, Cirac J I et al. Inseparable criterion for continuous variable systems[J]. Physical Review Letters, 84, 2722-2725(2000). http://link.springer.com/10.1007/978-94-015-1258-9_13

    [32] Simon R. Peres-Horodecki separability criterion for continuous variable systems[J]. Physical Review Letters, 84, 2726-2729(2000). http://www.ncbi.nlm.nih.gov/pubmed/11017310

    [33] Jin X L, Su J, Zheng Y H. Influence of the non-ideal balanced homodyne detection on the measured squeezing degree[J]. Acta Optica Sinica, 36, 1027001(2016).

    Yaoyao Zhou, Juan Yu, Zhihui Yan, Xiaojun Jia. Entanglement Source with High Entanglement Degree Based on Wedged Nonlinear Crystals[J]. Acta Optica Sinica, 2018, 38(7): 0727001
    Download Citation