• Journal of Infrared and Millimeter Waves
  • Vol. 41, Issue 1, 2021318 (2022)
Juan-Feng ZHU and Chao-Hai DU*
Author Affiliations
  • State Key Laboratory of Advanced Optical Communication Systems and Networks,School of Electronics,Peking University,Beijing 100871,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2022.01.003 Cite this Article
    Juan-Feng ZHU, Chao-Hai DU. Research progress of free-electron radiation based on metamaterials[J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 2021318 Copy Citation Text show less
    References

    [1] H. W. Koch, J Motz. Bremsstrahlung cross-section formulas and related data. Rev. Mod. Phys., 31, 920(1959).

    [2] F. Elder, A. Gurewitsch, R. Langmuir et al. Radiation from electrons in a synchrotron. Phys. Rev., 71, 829(1947).

    [3] V Ginzburg. Transition radiation and transition scattering. Phys Scr, 1982, 182(1982).

    [4] U. Happek, A. Sievers, E Blum. Observation of coherent transition radiation. Phys. Rev. Lett., 67, 2962(1991).

    [5] P Čerenkov. Visible light from pure liquids under the impact of γ-rays. Dokl. Acad. Sci. URSS(1934).

    [6] I Frank. Tamm I., Coherent visible radiation of fast electrons passing through matter. Selected Papers, Springer, 29-35(1991).

    [7] S Smith, J.E Purcell. Visible light from localized surface charges moving across a grating. Phys. Rev., 92, 1069(1953).

    [8] N Zheludev. I.Kivshar Y. S. From metamaterials to metadevices. Nat Mater., 11, 917-924(2012).

    [9] R. Marqués, F Medina. Rafii-El-Idrissi R. Role of bianisotropy in negative permeability and left-handed metamaterials. Phys. Rev. B, 65, 144440(2002).

    [10] J. D. Joannopoulos, P Villeneuve. R.Fan S. Photonic crystals: putting a new twist on light. Nature, 386, 143-149(1997).

    [11] Yang Li, S. Kita, P. Muñoz et al. On-chip zero-index metamaterials. Nat. Photonics, 9, 738-742(2015).

    [12] A. Poddubny, I. Iorsh, P. Belov et al. Hyperbolic metamaterials. Nat. Photonics, 7, 948-957(2013).

    [13] Hou-Tong Chen, A Taylor. J. Yu Nanfang. A review of metasurfaces: physics and applications. Rep. Prog. Phys., 79, 076401(2016).

    [14] E. Galiffi, P Huidobro. Pendry J. Broadband nonreciprocal amplification in luminal metamaterials. Phys. Rev. Lett., 123, 206101(2019).

    [15] A Rogov, E Narimanov. Space–time metamaterials. ACS Photonics, 5, 2868-2877(2018).

    [16] S. Vezzoli, V. Bruno, C. DeVault et al. Optical time reversal from time-dependent epsilon-near-zero media. Physical review letters, 120, 043902(2018).

    [17] G. Adamo, K. F. MacDonald, Y. Fu et al. Light well: a tunable free-electron light source on a chip. Phys. Rev. Lett., 103, 113901(2009).

    [18] Shenggang Liu, Min Hu, Yaxin Zhang et al. Theoretical investigation of a tunable free-electron light source. Phys. Rev. E, 83, 066609(2011).

    [19] Shenggang Liu, Ping Zhang, Weihao Liu et al. Surface polariton Cherenkov light radiation source. Phys. Rev. Lett., 109, 153902(2012).

    [20] Tao Zhao, Min Hu, Renbin Zhong et al. Cherenkov terahertz radiation from graphene surface plasmon polaritons excited by an electron beam. Appl. Phys. Lett., 110, 231102(2017).

    [21] Jin Tao, LinZheng Guoxing Wu. Graphene surface-polariton in-plane Cherenkov radiation. Carbon, 133, 249-253(2018).

    [22] Yong-Qiang Liu, Pu-Kun Liu. Excitation of surface plasmon polaritons by electron beam with graphene ribbon arrays. J. Appl. Phys., 121, 113104(2017).

    [23] J. Pendry, L Martin-Moreno. Garcia-Vidal F. Mimicking surface plasmons with structured surfaces. Science, 305, 847-848(2004).

    [24] J. K. So, J. H. Won, M. Sattorov et al. Cerenkov radiation in metallic metamaterials. Appl. Phys. Lett., 97, 151107(2010).

    [25] Yong-Qiang Liu, Ling-Bao Kong, Chao-Hai Du et al. Spoof surface plasmon modes on doubly corrugated metal surfaces at terahertz frequencies. J. Phys. D, 49, 235501(2016).

    [26] Yong-Qiang Liu, Ling-Bao Kong, Chao-Hai Du et al. A terahertz electronic source based on the spoof surface plasmon with subwavelength metallic grating. IEEE Trans Plasma Sci, 44, 930-937(2016).

    [27] Yong-Qiang Liu, Chao-Hai Du, Pu-Kun Liu. Terahertz electronic source based on spoof surface plasmons on the doubly corrugated metallic waveguide. IEEE Trans Plasma Sci, 44, 3288-329(2016).

    [28] Ling-Bao Kong, Zhaoyang Chen. Plasmonic electron acceleration with the meta-surfaces. Phys. Plasmas, 24, 083111(2017).

    [29] Ping Zhang, Yaxin Zhang, Min Hu et al. Diffraction radiation of a sub-wavelength hole array with dielectric medium loading. J J. Phys. D, 45, 145303(2012).

    [30] Ya-Xin Zhang, Yu-Cong Zhou, Liang Dong et al. Coherent terahertz radiation from high-harmonic component of modulated free-electron beam in a tapered two-asymmetric grating structure. Appl. Phys. Lett., 101, 123503(2012).

    [31] Ling-Bao Kong, Cheng-Ping Huang, Chao-Hai Du et al. Enhancing spoof surface-plasmons with gradient metasurfaces. Sci. Rep., 5, 1-5(2015).

    [32] S. Kim, I. K. Baek, R. Bhattacharya et al. High‐Q Metallic Fano Metamaterial for Highly Efficient Cerenkov Lasing. Adv. Opt. Mater., 6, 1800041(2018).

    [33] A. Bera, R. K. Barik, M. Sattorov et al. Surface-coupling of Cerenkov radiation from a modified metallic metamaterial slab via Brillouin-band folding. Opt. Express, 22, 3039-3044(2014).

    [34] Yanan Song, Ningxiao Jiang, Liu Liu et al. Cherenkov radiation from photonic bound states in the continuum: towards compact free-electron lasers. Phys. Rev. Appl., 10, 064026(2018).

    [35] Yi Yang, A. Massuda, C. Roques-Carmes et al. Maximal spontaneous photon emission and energy loss from free electrons. Nature Phys., 14, 894-899(2018).

    [36] G Viktor. V. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp., 10, 509(1968).

    [37] J. B. Pendry, A. Holden, W. Stewart et al. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett., 76, 4773(1996).

    [38] J. B. Pendry, A. J. Holden, D. J. Robbins et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. theory Techn., 47, 2075-2084(1999).

    [39] R. A. Shelby, D Smith. R.Schultz S. Experimental verification of a negative index of refraction. Science, 292, 77-79(2001).

    [40] Sheng Xi, Hongsheng Chen, Tao Jiang et al. Experimental verification of reversed Cherenkov radiation in left-handed metamaterial. Phys. Rev. Lett., 103, 194801(2009).

    [41] Hongsheng Chen, Min Chen. Flipping photons backward: reversed Cherenkov radiation. Mater. Today, 14, 34-41(2011).

    [42] Shuang Zhang, Xiang Zhang. Flipping a photonic shock wave. Physics, 2, 91(2009).

    [43] Zhaoyun Duan, B.I. Wu, Jie Lu et al. Reversed Cherenkov radiation in a waveguide filled with anisotropic double-negative metamaterials. J. Appl. Phys., 104, 063303(2008).

    [44] Zhaoyun Duan, B.I. Wu, Jie. Lu et al. Cherenkov radiation in anisotropic double-negative metamaterials. Opt. Express, 16, 18479-18484(2008).

    [45] Zhaoyun Duan, Xianfeng Tang, Zhanliang Wang et al. Observation of the reversed Cherenkov radiation. Nat. Commun., 8, 1-7(2017).

    [46] Jin Tao, Qi Jie Wang, Jingjing Zhang et al. Reverse surface-polariton Cherenkov radiation. Sci. Rep., 6, 1-8(2016).

    [47] Zhaoyun. Duan, M. A. Shapiro, E. Schamiloglu et al. Metamaterial-inspired vacuum electron devices and accelerators. IEEE Trans. on Electron Devices, 66, 207-218(2018).

    [48] Zhaoyun. Duan, B.-I. Wu, Sheng Xi et al. Research progress in reversed Cherenkov radiation in double-negative metamaterials. Prog. Electromagn Res, 90, 75-87(2009).

    [49] Xueying Lu, M. A. Shapiro, I. Mastovsky et al. Generation of high-power, reversed-Cherenkov wakefield radiation in a metamaterial structure. Phys. Rev. Lett., 122, 014801(2019).

    [50] J. Hummelt, X. Lu, H. Xu et al. Coherent Cherenkov-cyclotron radiation excited by an electron beam in a metamaterial waveguide. Phys. Rev. Lett., 117, 237701(2016).

    [51] Xueying. Lu, J. F. Picard, M. A. Shapiro et al. Coherent high-power RF wakefield generation by electron bunch trains in a metamaterial structure. Appl. Phys. Lett., 116, 264102(2020).

    [52] Xueying Lu, M Shapiro. A.Temkin R. J. Modeling of the interaction of a volumetric metallic metamaterial structure with a relativistic electron beam. Phys. Rev. ST - Accel.Beams, 18, 081303(2015).

    [53] Xin Wang, Xianfeng Tang, Shifeng Li et al. Recent advances in metamaterial klystrons. EPJ Applied Metamaterials, 8, 9(2021).

    [54] Yanshuai Wang, Zhaoyun Duan, Xianfeng Tang et al. All-metal metamaterial slow-wave structure for high-power sources with high efficiency. Appl. Phys. Lett., 107, 153502(2015).

    [55] Xin Wang, Shifeng Li, Xuanming Zhang et al. Novel S-band metamaterial extended interaction klystron. IEEE Electron Device Lett, 41, 1580-1583(2020).

    [56] J. S. Hummelt, S. M. Lewis, M. A. Shapiro et al. Design of a metamaterial-based backward-wave oscillator. IEEE Trans Plasma Sci, 42, 930-936(2014).

    [57] Fang Liu, Long Xiao, Yu Ye et al. Integrated Cherenkov radiation emitter eliminating the electron velocity threshold. Nat. Photonics, 11, 289-292(2017).

    [58] Yue-Chai Lin, Fang Liu, Yi-Dong Huang. Cherenkov radiation based on metamaterials. Acta Physica Sinica., 69, 56-68(2020).

    [59] Hao Hu, Xiao Lin, Jingjing Zhang et al. Nonlocality induced Cherenkov threshold. Laser Photonics Rev., 14, 2000149(2020).

    [60] P. Shekhar, S. Pendharker, H. Sahasrabudhe et al. Extreme ultraviolet plasmonics and Cherenkov radiation in silicon. Optica, 5, 1590-1596(2018).

    [61] Xiaodong Feng, Sen Gong, Renbin Zhong et al. Terahertz radiation in graphene hyperbolic medium excited by an electric dipole. Opt. Lett, 43, 1187-1190(2018).

    [62] Xiaoqiuyan Zhang, Min Hu, Zhuocheng Zhang et al. High-efficiency threshold-less Cherenkov radiation generation by a graphene hyperbolic grating in the terahertz band. Carbon, 183, 225-231(2021).

    [63] Jin Tao, Lin Wu, Zhengxing Guo et al. Cherenkov polari tonic radiation in a natural hyperbolicmaterial. Carbon, 150, 136-141(2019).

    [64] Tuo Qu, Fang Liu, Yuechai Lin et al. Cherenkov radiation generated in hexagonal boron nitride using extremely low-energy electrons. Nanophotonics, 9, 1491-1499(2020).

    [65] P. Genevet, D. Wintz, A. Ambrosio et al. Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial. Nat. Nanotechnol., 10, 804-809(2015).

    [66] Yiran Zhang, Cheng Hu, B. Lyu et al. Tunable Cherenkov radiation of phonon Polaritons in silver nanowire/hexagonal boron nitride heterostructures. Nano Lett., 20, 2770-2777(2020).

    [67] Chiyan Luo, M. Ibanescu, S. G. Johnson et al. Cerenkov radiation in photonic crystals. Science, 299, 368-371(2003).

    [68] Xiao Lin, S. Easo, Yichen Shen et al. Controlling Cherenkov angles with resonance transition radiation. Nature Phys., 14, 816-821(2018).

    [69] Xiao Lin, Hao Hu, S. Easo et al. A Brewster route to Cherenkov detectors. Nat. Commun., 12, 1-7(2021).

    [70] Yichen Shen, Dexin Ye, I. Celanovic et al. Optical broadband angular selectivity. Science, 343, 1499-1501(2014).

    [71] Yichen Shen, C. W. Hsu, Y. X. Yeng et al. Broadband angular selectivity of light at the nanoscale: Progress, applications, and outlook. Appl Phys Rev, 3, 011103(2016).

    [72] V. Ginis, J. Danckaert, I. Veretennicoff et al. Controlling Cherenkov radiation with transformation-optical metamaterials. Phys. Rev. Lett., 113, 167402(2014).

    [73] Hao Hu, Xiao Lin, Liang Jie Wong et al. Surface Dyakonov-Cherenkov Radiation. arXiv preprint arXiv, 2020.

    [74] Zuojia Wang, Kan Yao, Min Chen et al. Manipulating Smith-Purcell emission with babinet metasurfaces. Phys. Rev. Lett., 117, 157401(2016).

    [75] Lin Li, Kan Yao, Zuojia Wang et al. Harnessing Evanescent Waves by Biamisotropic Metasur faces. Laser. Photonics. Rev., 14, 1900244(2020).

    [76] L. Jing, X. Lin, Z. Wang et al. Polarization Shaping of Free‐Electron Radiation by Gradient Bianisotropic Metasurfaces. Laser Photonics Rev., 15, 2000426(2021).

    [77] Zhaoxian Su, Feng Cheng, Lin Li et al. Complete control of Smith-Purcell radiation by graphene metasurfaces. ACS Photonics, 6, 1947-1954(2019).

    [78] Liqiao Jing, Zuojia Wang, Xiao Lin et al. Spiral field generation in Smith-Purcell radiation by helical metagratings. Research, 2019(2019).

    [79] Juan-Feng Zhu, Chao-Hai Du, Zi-Wen Zhang et al. Smith–Purcell radiation from helical grating to generate wideband vortex beams. Opt. Lett, 46, 4682-4685(2021).

    [80] Zi-Wen Zhang, Chaohai Du, Juan-Feng Zhu et al. A Terahertz vortex beam emitter with tunable topological charge and harmonic excitation. J. Lightwave Technol(2021).

    [81] J. Sloan, N. Rivera, J. D. Joannopoulos et al. Two photon emission from superluminal and accelerating index perturbations. arXiv preprint arXiv:, 2021.

    [82] A. Dikopoltsev, Y. Sharabi, M. Lyubarov et al. Light Emission by Free Electrons in Photonic Time-Crystals. arXiv preprint arXiv:, 2021.

    [83] Y. Sharabi, E Lustig. Segev M. Disordered Photonic Time Crystals. Phys. Rev. Lett., 126, 163902(2021).

    [84] D. Oue, K Ding. Pendry J. erenkov radiation in vacuum from a superluminal grating. arXiv preprint arXiv:, 2021.

    [85] N. Rivera, I. Kaminer, B. Zhen et al. Shrinking light to allow forbidden transitions on the atomic scale. Science, 353, 263-269(2016).

    [86] Liang Jie Wong, I. Kaminer, O. Ilic et al. Towards graphene plasmon-based free-electron infrared to X-ray sources. Nat. Photon., 10, 46-52(2016).

    [87] I. Kaminer, Y. T. Katan, H. Buljan et al. Efficient plasmonic emission by the quantum Čerenkov effect from hot carriers in graphene. Nat. Commun., 7, 1-9(2016).

    Juan-Feng ZHU, Chao-Hai DU. Research progress of free-electron radiation based on metamaterials[J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 2021318
    Download Citation