[1] LIU B, WANG Q, WANG X. Morphology evolution of urchin- like NiCo2O4 nanostructures and their applications as psuedocapacitors and photoelectrochemical cells[D]. Journal of Materials Chemistry, 22, 21647-21653(2012).
[2] HOU L, LI J, YUAN C. Polymer-assisted synthesis of a 3D hierarchical porous network-like spinel NiCo2O4 framework towards high-performance electrochemical capacitors.[D]. Journal of Materials Chemistry A, 1, 11145-11151(2013).
[3] HU L, LIAO M, WU L. Electrical transport properties of large, individual NiCo2O4 nanoplates[D]. Advanced Functional Materials, 22, 998-1004(2012).
[4] JI X, WU Z, ZHU Y. NiCo2O4-based materials for electrochemical supercapacitors[D]. Journal of Materials Chemistry A, 2, 14759-14772(2014).
[5] GU L, QIAN L, YANG L. Direct growth of NiCo2O4 nanostructures on conductive substrates with enhanced electrocatalytic activity and stability for methanol oxidation[D]. Nanoscale, 5, 7388-7396(2013).
[6] CAI M, LU E, ZHAN J. Controlled synthesis and electrocatalytic performance of porous nickel cobaltite rods.[D]. Journal of Inorganic Materials, 32, 11-17(2017).
[7] DING R, JIA M, QI L. Facile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidation[D]. Nanoscale, 6, 1369-1376(2014).
[8] HAN L, LOU X W, YU X Y. Formation of prussian-blue-analog nanocages
[9] GAO X, LI Q, ZHANG H. Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting.[D]. Angewandte Chemie International Edition, 55, 6290-6294(2016).
[10] FU Y, WANG J, XU Y. Hierarchical NiCo2O4 hollow nanospheres as high efficient bi-functional catalysts for oxygen reduction and evolution reactions[D]. International Journal of Hydrogen Energy, 41, 8847-8854(2016).
[11] CHEAH Y, KO Y, LI L. The facile synthesis of hierarchical porous flower-like NiCo2O4 with superior lithium storage properties.[D]. Journal of Materials Chemistry A, 1, 10935-10941(2013).
[12] LI J, LIU Y, XIONG S. High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batterie[D]. ACS Appl. Mater. Interfaces, 5, 981-988(2013).
[13] HU Z, MA L, SHEN X. High performance supercapacitor electrode materials based on porous NiCo2O4 hexagonal nanoplates/ reduced graphene oxide composites[D]. Chemical Engineering Journal, 262, 980-988(2015).
[14] GAO Z, WANG J, YANG W. Flexible all-solid-state hierarchical NiCo2O4/porous graphene paper asymmetric supercapacitors with an exceptional combination of electrochemical properties.[D]. Nano Energy, 13, 306-317(2015).
[15] GUAN B, XIAO W, YU L. Formation of yolk-shelled Ni-Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors Formation of yolk-shelled Ni-Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion batteries[D]. Advanced Energy Materials, 5(2015).
[16] WANG N, ZHANG Q, ZHAO P. Monodisperse nickel/cobalt oxide composite hollow spheres with mesoporous shell for hybrid supercapacitor: a facile fabrication and excellent electrochemical performance[D]. Composites Part B Engineering, 113, 144-151(2017).
[17] GUAN C, LIU X, REN W et al. Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis[D]. Advanced Energy Materials(2017).
[18] FAN X, WEN R J, YANG Z H. Electrochemical performances of ZnO with different morphology as anodic materials for Ni/Zn secondary batteries[D]. Electrochimica Acta, 83, 376-382(2012).
[19] SHEREEF A, TONG T, WU J. Effects of material morphology on the phototoxicity of nano-TiO2 to bacteria[D]. Environmental Science & Technology, 47, 12486-12495(2013).
[20] CANDELARIA S L, UCHAKER E, ZHANG Q. Nanomaterials for energy conversion and storage[D]. Chemical Society Reviews, 42, 3127-3171(2013).
[21] GHOSH S K, PAL T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications[D]. Chemical Reviews, 107, 4797-4862(2007).
[22] FUNSTON A M, MULVANEY P, SARDAR R. Gold nanoparticles: past, present, and future.[D]. Langmuir, 25, 13840-13851(2009).
[23] WAN C, YE X, YUAN L. Facial synthesis of silver- incorporated conductive polypyrrole submicron spheres for supercapacitors[D]. Electrochimica Acta, 213, 115-123(2016).
[24] KIM J, LEE S B, LEE S K. Magnetic thermal dissipations of FeCo hollow fibers filled in composite sheets under alternating magnetic field.[D]. Applied Surface Science, 415, 114-118(2017).
[25] CAO X, JIN C, LU F. Facile synthesis and excellent electrochemical properties of NiCo2O4 spinel nanowire arrays as a bifunctional catalyst for the oxygen reduction and evolution reaction[D]. Journal of Materials Chemistry A, 1, 12170-12177(2013).
[26] AL-ENIZI A M, JIA D, PENG Z. From water oxidation to reduction: homologous Ni-Co based nanowires as complementary water splitting electrocatalysts[D]. Advanced Energy Materials, 5(2015).
[27] CHEN H, JIANG J, ZHANG L. Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors[D]. Journal of Power Sources, 248, 28-36(2014).
[28] WANG Q, WANG X, XU J. Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes[D]. Nano Energy, 8, 44-51(2014).
[29] CAO X, HUANG Y, ZHOU J. Two-dimensional NiCo2O4 nanosheet-coated three-dimensional graphene networks for high- rate, long-cycle-life supercapacitors[D]. Nanoscale, 7, 7035-7039(2015).
[30] CHEN D, WANG Q, WANG R. Ternary oxide nanostructured materials for supercapacitors: a review[D]. Journal of Materials Chemistry A, 3, 10158-10173(2015).
[31] , WU H B, ZHANG L. Iron-oxide-based advanced anode materials for lithium-ion batteries[D]. Advanced Energy Materials, 4(2014).
[32] MA L, ZHANG Q, ZHAO Q. SnO2-based nanomaterials: synthesis and application in lithium-ion batteries and supercapacitors[D]. Journal of Nanomaterials, 2015, 6-21(2015).
[33] DENG X, WANG C, ZHOU E. Three-dimensionally porous NiCo2O4 nanoneedle arrays for high performance supercapacitor[D]. Science of Advanced Materials, 8, 1298-1304(2016).
[34] WANG T, XU K, ZOU R. Chain-like NiCo2O4 nanowires with different exposed reactive planes for high-performance supercapacitors[D]. Journal of Materials Chemistry A, 1, 8560-8566(2013).
[35] JIANG L, LI X, ZHOU C. Integrating large specific surface area and high conductivity in hydrogenated NiCo2O4 double-shell hollow spheres to improve supercapacitors[D]. NPG Asia Materials, 7, 165-173(2015).
[36] DAN X, LIU X, ZHANG D. Superior performance of 3D Co-Ni bimetallic oxides for catalytic degradation of organic dye: investigation on the effect of catalyst morphology and catalytic mechanism[D]. Applied Catalysis B: Environmental, 186, 193-203(2016).
[37] HSU C T, HU C C. Synthesis and characterization of mesoporous spinel NiCo2O4 using surfactant-assembled dispersion for asymmetric supercapacitors[D]. Journal of Power Sources, 242, 662-671(2013).
[38] AN C, HUANG Y, WANG Y. Novel three-dimensional NiCo2O4 hierarchitectures: solvothermal synthesis and electrochemical properties[D]. CrystEngComm, 16, 385-392(2013).
[39] KONG L B, LIU M C, LU C. Effect of surfactant on the morphology and capacitive performance of porous NiCo2O4[D]. Journal of Solid State Electrochemistry, 17, 1463-1471(2013).
[40] MA M, YANG J, ZHANG Y. Selective synthesis of hierarchical mesoporous spinel NiCo2O4 for high-performance supercapacitors[D]. Nanoscale, 6, 4303-4308(2014).
[41] GUO Y G, WANG X, WU X L. Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres[D]. Advanced Functional Materials, 20, 1680-1686(2010).
[42] CHEN Z, KIM B, LEE D. One-pot synthesis of a mesoporous NiCo2O4 nanoplatelet and graphene hybrid and its oxygen reduction and evolution activities as an efficient bi-functional electrocatalyst[D]. Journal of Materials Chemistry A, 1, 4754-4762(2013).
[43] CHENG J P, LIU F, ZHANG J. Binary nickel-cobalt oxides electrode materials for high-performance supercapacitors: influence of its composition and porous nature.[D]. ACS Applied Materials & Interfaces, 7, 17630-17640(2015).
[44] LEE J L, LIU Y M, TSENG C C. Microwave-assisted hydrothermal synthesis of spinel nickel cobaltite and application for supercapacitors.[D]. Journal of the Taiwan Institute of Chemical Engineers, 44, 415-419(2013).
[45] CHANG K H, HSU C T, HU C C. Microwave-assisted hydrothermal annealing of binary Ni-Co oxy-hydroxides for asymmetric supercapacitors.[D]. Journal of Power Sources, 238, 180-189(2013).
[46] LEI Y, LI J, WANG Y. Rapid microwave-assisted green synthesis of 3D hierarchical flower-shaped NiCo2O4 microsphere for high-performance supercapacitor[D]. ACS Applied Materials & Interfaces, 6, 1773-1780(2014).
[47] HENCH L L, WEST J K. The Sol-Gel process[D]. Chemical Reviews, 90, 33-72(1990).
[48] NIEDERBERGER M. Nonaqueous Sol-Gel routes to metal oxide nanoparticles[D]. Accounts of Chemical Research, 38, 793-800(2007).
[49] HENRY M, LIVAGE J, SANCHEZ C. Sol-Gel chemistry of transition metal oxides[D]. Progress in Solid State Chemistry, 18, 259-341(1988).
[50] BERLINGUETTE C P, SUI R, YOUNG J L. Sol-Gel synthesis of linear Sn-doped TiO2 nanostructures[D]. Journal of Materials Chemistry, 20, 498-503(2009).
[51] PING T J, XIANG Y C, YE Q W. Sol-Gel approach for controllable synthesis and electrochemical properties of NiCo2O4 crystals as electrode materials for application in supercapacitors[D]. Electrochimica Acta, 56, 7517-7522(2011).
[52] LIANG K, LIU W, LU C. A three dimensional vertically aligned multiwall carbon nanotube/NiCo2O4 core/shell structure for novel high-performance supercapacitors.[D]. Journal of Materials Chemistry A, 2, 5100-5107(2014).
[53] CAI F, CHEN H, KANG Y. Hierarchical CNT@NiCo2O4 core-shell hybrid nanostructure for high-performance supercapacitors[D]. Journal of Materials Chemistry A, 2, 11509-11515(2014).
[54] CHEN S, SU D, WEI Y. 3D mesoporous hybrid NiCo2O4@graphene nanoarchitectures as electrode materials for supercapacitors with enhanced performances[D]. Journal of Materials Chemistry A, 2, 8103-8109(2014).
[55] WANG L, WANG X, XIAO X. Reduced graphene oxide/ nickel cobaltite nanoflake composites for high specific capacitance supercapacitors.[D]. Electrochimica Acta, 111, 937-945(2013).
[56] LI S, SUN S, WANG S. Asymmetric supercapacitors based on NiCo2O4/three dimensional graphene composite and three dimensional graphene with high energy density[D]. Journal of Materials Chemistry A, 4, 1-8(2016).
[57] GUO P, MI R, WU J. Ultrathin NiCo2O4 nanosheets grown on three-dimensional interwoven nitrogen-doped carbon nanotubes as binder-free electrodes for high-performance supercapacitors[D]. Journal of Materials Chemistry A, 3, 15331-15338(2015).
[58] NGUYEN V H, SHIM J J. Three-dimensional nickel foam/graphene/ NiCo2O4 as high-performance electrodes for supercapacitors[D]. Journal of Power Sources, 273, 110-117(2015).
[59] YU L, YUAN C, ZHANG G. Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high- performance supercapacitor electrodes[D]. Chemical Communications, 49, 137-139(2013).
[60] WANG T, YU X, ZHANG G. Nanoforest of hierarchical Co3O4@NiCo2O4 nanowire arrays for high-performance supercapacitors[D]. Nano Energy, 2, 586-594(2013).
[61] DUAY J, RAN L, SANG B L. Heterogeneous nanostructured electrode materials for electrochemical energy storage[D]. Chemical Communications, 47, 1384-1404(2011).
[62] CHENG G, DENG F, YU L. Synthesis of ultrathin mesoporous NiCo2O4 nanosheets on carbon fiber paper as integrated high-performance electrodes for supercapacitors.[D]. Journal of Power Sources, 251, 202-207(2014).
[63] DU J, ZHANG H, ZHOU G. Ultrathin porous NiCo2O4 nanosheet arrays on flexible carbon fabric for high-performance supercapacitors[D]. ACS Applied Materials & Interfaces, 5, 7405-7409(2013).
[64] LOU X W, ZHANG G. General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high- performance electrodes for supercapacitors[D]. Advanced Materials, 25, 976-979(2013).
[65] , ZHANG G. Controlled growth of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers for high-performance supercapacitors[D]. Scientific Reports, 3(2013).
[66] MUSIANI M. Electrodeposition of composites: an expanding subject in electrochemical materials science[D]. Electrochimica Acta, 45, 3397-3402(2000).
[67] PEI A, SHI F, ZHENG G. Nanoscale nucleation and growth of electrodeposited lithium metal[D]. Nano Letters, 17, 1132-1139(2017).
[68] CHOUDHURY S, TU Z, ZACHMAN M J. Nanoporous hybrid electrolytes for high-energy batteries based on reactive metal anodes[D]. Advanced Energy Materials, 7(2017).
[69] ALIOFKHAZRAEI M, ASSAREH S, TORABINEJAD V. Electrodeposition of Ni-Fe alloys, composites, and nano coatings-a review[D]. Journal of Alloys & Compounds, 691, 841-859(2016).
[70] HOU L, LI J, YUAN C. Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors[D]. Advanced Functional Materials, 22, 4592-4597(2012).
[71] HUANG X, LU X, XIE S. Controllable synthesis of porous nickel-cobalt oxide nanosheets for supercapacitors.[D]. Journal of Materials Chemistry, 22, 13357-13364(2012).
[72] KIM J H, PAWAR B S, PAWAR S M. Recent status of chemical bath deposited metal chalcogenide and metal oxide thin films[D]. Current Applied Physics, 11, 117-161(2011).
[73] JIN X, PU J, WANG J. Porous hexagonal NiCo2O4 nanoplates as electrode materials for supercapacitors.[D]. Electrochimica Acta, 106, 226-234(2013).
[74] TAN S, WEI Q, XIONG F. Porous one-dimensional nanomaterials: design Porous one-dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage[D]. Advanced Materials, 29(2017).
[75] MIAO J, TAO H B, XIAO F X. One-dimensional hybrid nanostructures for heterogeneous photocatalysis and photoelectrocatalysis[D]. Small, 11, 2115-2131(2015).
[76] CAI M, ZHAN J, ZHANG C. Synthesis of mesoporous NiCo2O4 fibers and their electrocatalytic activity on direct oxidation of ethanol in alkaline media[D]. Electrochimica Acta, 154, 70-76(2015).
[77] CHEN J S, LOU X W. SnO2-based nanomaterials: synthesis and application in lithium-ion batteries[D]. Small, 9, 1877-1893(2013).
[78] HOSTER H E, WU H B, ZHANG G Q. Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors[D]. Energy & Environmental Science, 5, 9453-9456(2012).
[79] SU C. Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: a review of recent literature[D]. Journal of Hazardous Materials, 322, 48-84(2016).
[80] DUBAL D P, GOMEZ-ROMERO P, SANKAPAL B R. Nickel cobaltite as an emerging material for supercapacitors: an overview.[D]. Nano Energy, 11, 377-399(2015).
[81] JIANG H, LI C, MA J. Hierarchical porous NiCo2O4 nanowires for high-rate supercapacitors[D]. Chemical Communications, 48, 4465-4467(2012).
[82] CHE Q, LI H, SHEN L. Metal oxides: mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage[D]. Advanced Functional Materials, 24, 2736-2736(2014).
[83] CHEN R, MIAO J, WANG H Y. A flexible high-performance oxygen evolution electrode with three-dimensional NiCo2O4 core-shell nanowires[D]. Nano Energy, 1, 333-340(2015).
[84] GUO B, JI L, LIN Z. Assembly of carbon-SnO2 core-sheath composite nanofibers for superior lithium storage[D]. Chemistry-A European Journal, 16, 11543-11548(2010).
[85] CHEAH Y L, LI L, PENG S. Electrospun eggroll-like CaSnO3 nanotubes with high lithium storage performance[D]. Nanoscale, 5, 134-138(2013).
[86] CHEAH Y, LI L, PENG S. Electrospun porous NiCo2O4 nanotubes as advanced electrodes for electrochemical capacitors[D]. Chemistry, 19, 5892-5898(2013).
[87] MA F X, XU C Y, YU L. Self-supported formation of hierarchical NiCo2O4 tetragonal microtubes with enhanced electrochemical properties[D]. Energy & Environmental Science, 9, 862-866(2016).