• Photonics Research
  • Vol. 5, Issue 2, 108 (2017)
Huanying Zhou1, Ciyuan Qiu1、3、*, Xinhong Jiang1, Qingming Zhu1, Yu He1, Yong Zhang1, Yikai Su1、4、*, and Richard Soref2
Author Affiliations
  • 1State Key Lab of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2Engineering Department, University of Massachusetts, Boston, Massachusetts 02125, USA
  • 3e-mail: qiuciyuan@sjtu.edu.cn
  • 4e-mail: yikaisu@sjtu.edu.cn
  • show less
    DOI: 10.1364/PRJ.5.000108 Cite this Article Set citation alerts
    Huanying Zhou, Ciyuan Qiu, Xinhong Jiang, Qingming Zhu, Yu He, Yong Zhang, Yikai Su, Richard Soref. Compact, submilliwatt, 2 × 2 silicon thermo-optic switch based on photonic crystal nanobeam cavities[J]. Photonics Research, 2017, 5(2): 108 Copy Citation Text show less
    References

    [1] X. Wan, N. Hua, X. P. Zheng. Dynamic routing and spectrum assignment in spectrum-flexible transparent optical networks. J. Opt. Commun. Netw., 4, 603-613(2012).

    [2] S. J. B. Yoo. Optical packet and burst switching technologies for the future photonic internet. J. Lightwave Technol., 24, 4468-4492(2006).

    [3] Y. W. Yin, R. Proietti, X. H. Ye, C. J. Nitta, V. Akella, S. J. B. Yoo. LIONS: an AWGR-based low-latency optical switch for high-performance computing and data centers. IEEE J. Sel. Top. Quantum Electron., 19, 3600409(2013).

    [4] K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. P. Zhang, X. T. Wen, Y. Chen. An optical switching architecture for data center networks with unprecedented flexibility. IEEE/ACM Trans. Netw., 22, 498-511(2014).

    [5] Y. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, H. Ishikawa. Low-crosstalk 2 × 2 thermo-optic switch with silicon wire waveguides. Opt. Express, 18, 9071-9075(2010).

    [6] L. Chen, Y. K. Chen. Compact, low-loss and low-power 8 × 8 broadband silicon optical switch. Opt. Express, 20, 18977-18985(2012).

    [7] S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M. Yu, G. Lo. Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch. Optical Fiber Communication Conference, OTuM2(2011).

    [8] S. Zhao, L. Lu, L. Zhou, D. Li, Z. Guo, J. Chen. 16 × 16 silicon Mach–Zehnder interferometer switch actuated with waveguide microheaters. Photon. Res., 4, 202-206(2016).

    [9] R. Yu, S. Cheung, Y. Li. A scalable silicon photonic chip-scale optical switch for high performance computing systems. Opt. Express, 21, 32655-32663(2013).

    [10] K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S.-H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, H. Kawashima. Ultra-compact 8 × 8 strictly-nonblocking Si-wire PILOSS switch. Opt. Express, 22, 3887-3894(2014).

    [11] T. Goh, M. Yasu, K. Hattori. Low-loss and high-extinction-ratio silica-based strictly nonblocking 16 × 16 thermooptic matrix switch. IEEE Photon. Technol. Lett., 10, 810-812(1998).

    [12] Q. Xu, B. Schmidt, J. Shakya, M. Lipson. Cascaded silicon micro-ring modulators for WDM optical interconnection. Opt. Express, 14, 9430-9435(2006).

    [13] R. L. Espinola, M.-C. Tsai, J. T. Yardley, R. M. Osgood. Fast and low-power thermooptic switch on thin silicon-on-insulator. IEEE Photon. Technol. Lett., 15, 1366-1368(2003).

    [14] M. Harjanne, M. Kapulainen, T. Aalto, P. Heimala. Sub-μs switching time in silicon-on-insulator Mach–Zehnder thermooptic switch. IEEE Photon. Technol. Lett., 16, 2039-2041(2004).

    [15] I. Kiyat, A. Aydinli, N. Dagli. Low-power thermooptical tuning of SOI resonator switch. IEEE Photon. Technol., 18, 364-366(2006).

    [16] X. Wang, J. A. Martinez, M. S. Nawrocka, R. R. Panepucci. Compact thermally tunable silicon wavelength switch: modeling and characterization. IEEE Photon. Technol. Lett., 20, 936-938(2008).

    [17] Z. Zhou, B. Yin, Q. Deng, X. Li, J. Cui. Lowering the energy consumption in silicon photonic devices and systems. Photon. Res., 3, B28-B45(2015).

    [18] W. Fegadolli, J. Oliveira, V. Almeida, A. Scherer. Compact and low power consumption tunable photonic crystal nanobeam cavity. Opt. Express, 21, 3861-3871(2013).

    [19] Q. Quan, D. Floyd, I. Burgess, P. Deotare, I. Frank, S. Tang, R. Ilic, M. Loncar. Single particle detection in CMOS compatible photonic crystal nanobeam cavities. Opt. Express, 21, 32225-32233(2013).

    [20] Q. Quan, M. Loncar. Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities. Opt. Express, 19, 18529-18542(2011).

    [21] C. V. Poulton, X. Zeng, M. T. Wade, J. M. Shainline, J. S. Orcutt, M. A. Popović. Photonic crystal microcavities in a microelectronics 45  nm SOI CMOS Technology. IEEE Photon. Technol. Lett., 27, 665-668(2015).

    [22] K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, M. Notomi. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photonics, 4, 477-483(2010).

    [23] X. Ge, Y. Shi, S. He. Ultra-compact channel drop filter based on photonic crystal nanobeam cavities utilizing a resonant tunneling effect. Opt. Lett., 39, 6973-6976(2014).

    [24] H. Zhou, C. Qiu, J. Wu, B. Liu, X. Jiang, J. Peng, Z. Xu, R. Liu, Y. Zhang, Y. Su, R. Soref. 2 × 2 electro-optic switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities. Proceedings of Conference on Lasers and Electro-Optics (CLEO), JTh2A.24(2016).

    [25] H. Zhou, C. Qiu, Z. Xu, X. Jiang, Y. Yang, L. Han, Y. Zhang, Y. Su. A 2 × 2 silicon thermo-optic switch based on nanobeam cavities with ultra-small mode volumes. Proceedings of International Conference on Group IV Photonics, WB5(2016).

    [26] C. Manolatou, M. J. Khan, S. Fan, P. Villeneuve, H. Haus, J. Joannopoulos. Coupling of modes analysis of resonant channel add-drop filters. IEEE J. Quantum Electron., 35, 1322-1331(1999).

    [27] C. V. Poulton, X. Zeng, M. T. Wade, M. A. Popović. Channel add-drop filter based on dual photonic crystal cavities in push-pull mode. Opt. Lett., 40, 4206-4209(2015).

    [28] M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, G. N. Nielson. Adiabatic thermo-optic Mach–Zehnder switch. Opt. Lett., 38, 733-735(2013).

    [29] Q. Li, D. Nikolova, D. M. Calhoun, Y. Liu, R. Ding, T. B. Jones. Single microring-based 2 × 2 silicon photonic crossbar switches. IEEE Photon. Technol. Lett., 27, 1981-1984(2015).

    [30] K. Suzuki, G. Cong, K. Tanizawa, S. Kim, K. Ikeda, S. Namiki, H. Kawashima. Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter. Opt. Express, 23, 9083-9092(2015).

    [31] P. Dong, W. Qian, H. Liang, R. Shafiiha, N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, M. Asghari. Low power and compact reconfigurable multiplexing devices based on silicon microring resonators. Opt. Express, 18, 9852-9858(2010).

    [32] X. Zhang, S. Chakravarty, C. Chung, Z. Pan, H. Yan, R. T. Chen. Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities. Appl. Phys. Lett., 107, 221104(2015).

    [33] K. Liu, C. Zhang, S. Mu, S. Wang, V. J. Sorger. Two-dimensional design and analysis of trench-coupler based Silicon Mach–Zehnder thermo-optic switch. Opt. Express, 24, 15845-15853(2016).

    CLP Journals

    [1] Richard Soref. Design of low-energy on-chip electro-optical 1  ×  M wavelength-selective switches[J]. Photonics Research, 2017, 5(4): 340

    Huanying Zhou, Ciyuan Qiu, Xinhong Jiang, Qingming Zhu, Yu He, Yong Zhang, Yikai Su, Richard Soref. Compact, submilliwatt, 2 × 2 silicon thermo-optic switch based on photonic crystal nanobeam cavities[J]. Photonics Research, 2017, 5(2): 108
    Download Citation