• Laser & Optoelectronics Progress
  • Vol. 59, Issue 17, 1728002 (2022)
Dingyi Dan1, Keqin Ding2、*, and Anqing Shu1
Author Affiliations
  • 1School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, Hubei , China
  • 2China Special Equipment Inspection and Research Institute, Beijing 100029, China
  • show less
    DOI: 10.3788/LOP202259.1728002 Cite this Article Set citation alerts
    Dingyi Dan, Keqin Ding, Anqing Shu. Optimization and Test of Fiber Bragg Grating Strain Sensor with Loop Structure[J]. Laser & Optoelectronics Progress, 2022, 59(17): 1728002 Copy Citation Text show less
    Structure diagram of the FBG strain sensor
    Fig. 1. Structure diagram of the FBG strain sensor
    Schematic diagram of dimension parameters of the FBG strain sensor
    Fig. 2. Schematic diagram of dimension parameters of the FBG strain sensor
    Mesh division and load distribution of the senser
    Fig. 3. Mesh division and load distribution of the senser
    Deformation distribution of the sensor with loop structure. (a) Deformation distribution of the FBG; (b) deformation distribution of the matrix
    Fig. 4. Deformation distribution of the sensor with loop structure. (a) Deformation distribution of the FBG; (b) deformation distribution of the matrix
    Influence of different parameters on the strain sensitivity of the sensor. (a) L; (b) D; (c) d; (d) h
    Fig. 5. Influence of different parameters on the strain sensitivity of the sensor. (a) L; (b) D; (c) d; (d) h
    Fabrication of the FBG sensor. (a) Matrix of the sensor; (b) workbench for processing optical fibers; (c) dispensing system; (d) fabricated fiber Bragg grating sensor
    Fig. 6. Fabrication of the FBG sensor. (a) Matrix of the sensor; (b) workbench for processing optical fibers; (c) dispensing system; (d) fabricated fiber Bragg grating sensor
    Schematic diagram of the installation of the sensor
    Fig. 7. Schematic diagram of the installation of the sensor
    Test system with applied temperature load and applied tensile load
    Fig. 8. Test system with applied temperature load and applied tensile load
    Results of temperature-controlled experiments and tensile experiments. (a) Sensor wavelength as a function of temperature; (b) sensor wavelength drift as a function of tensile load
    Fig. 9. Results of temperature-controlled experiments and tensile experiments. (a) Sensor wavelength as a function of temperature; (b) sensor wavelength drift as a function of tensile load
    Load-strain curve of the sensor
    Fig. 10. Load-strain curve of the sensor
    Physical parameterValue
    Elastic modulus of FBG Ef /Pa7.2×1010
    Poisson’s ratio of FBG λf0.17
    Radius of FBG rf /mm0.0625
    Height of bonding layer h1 /mm0.5
    Width of bonding layer D1 /mm1
    Length of bare FBG Lf /mm17
    Elastic modulus of bonding layer Ea /Pa4×109
    Poisson’s ratio of bonding layer λa0.34
    Elastic modulus of matrix Em /Pa1.94×1011
    Poisson’s ratio of matrix λm0.3
    Table 1. Physical parameters of the sensor
    λ1λ2λ3λ4
    1537.88381537.99401537.85461537.9982
    Table 2. Initial wavelengths of each sensor
    Dingyi Dan, Keqin Ding, Anqing Shu. Optimization and Test of Fiber Bragg Grating Strain Sensor with Loop Structure[J]. Laser & Optoelectronics Progress, 2022, 59(17): 1728002
    Download Citation