• Laser & Optoelectronics Progress
  • Vol. 50, Issue 6, 60004 (2013)
Chen Jianzhao*, Lin Danying, Huang Jianheng, Liu Zhenwei, and Niu Hanben
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop50.060004 Cite this Article Set citation alerts
    Chen Jianzhao, Lin Danying, Huang Jianheng, Liu Zhenwei, Niu Hanben. Research Progress of Phase Contrast Methods for High-Resolution X-Ray Microscope[J]. Laser & Optoelectronics Progress, 2013, 50(6): 60004 Copy Citation Text show less
    References

    [1] S. O. Mayo, T. J. Davis, T. Gureyev et al.. X-ray phase-contrast microscopy and microtomography[J]. Opt. Express, 2003, 11(19): 2289~2302

    [2] U. Neuhusler, G. Schneider, W. Ludwig et al.. X-ray microscopy in Zernike phase contrast mode at 4 keV photon energy with 60 nm resolution[J]. J. Phys. D: Appl. Phys., 2003, 36(10A): A79~A82

    [3] A. Tkachuk, M. Feser, H. T. Cui et al.. High-resolution X-ray tomography using laboratory sources[C]. SPIE, 2006, 6318: 63181D

    [4] A. Sakdinawat, Y. W. Liu. Phase contrast soft X-ray microscopy using Zernike zone plates[J]. Opt. Express, 2008, 16(3): 1559~1564

    [5] O. von Hofsten, M. Bertilson, M. Lindblom et al.. Compact Zernike phase contrast X-ray microscopy using a single-element optic[J]. Opt. Lett., 2008, 33(9): 932~934

    [6] Y. T. Chen, T. Y. Chen, J. Yi et al.. Hard X-ray Zernike microscopy reaches 30 nm resolution[J]. Opt. Lett., 2011, 36(7): 1269~1271

    [7] Q. X. Yuan, K. Zhang, Y. L. Hong et al.. A 30 nm resolution hard X-ray microscope with X-ray fluorescence mapping capability at BSRF[J]. J. Synchrot. Radiat., 2012, 19(6): 1021~1028

    [8] J. Lim, S. Y. Park, J. Y. Huang et al.. Large-field high-contrast hard X-ray Zernike phase-contrast nano-imaging beamline at Pohang Light Source[J]. Rev. Sci. Instrum., 2013, 84(1): 013707

    [9] H. Kishimoto, Y. Shinohara, M. Naito et al.. Visualization of nanoscale deformation in polymer composites with Zernike-type phase-contrast X-ray microscopy and the finite element method[J]. Polym. J., 2013, 45(1): 64~69

    [10] T. Wilhein, B. Kaulich, E. Di Fabrizio et al.. Differential interference contrast X-ray microscopy with submicron resolution[J]. Appl. Phys. Lett., 2001, 78(14): 2082~2084

    [11] C. Chang, A. Sakdinawat, P. Fischer et al.. Single-element objective lens for soft X-ray differential interference contrast microscopy[J]. Opt. Lett., 2006, 31(10): 1564~1566

    [12] O. Von Hofsten, M. Bertilson, U. Vogt. Theoretical development of a high-resolution differential-interference-contrast optic for X-ray microscopy[J]. Opt. Express, 2008, 16(2): 1132~1141

    [13] Y. Takeda, W. Yashiro, T. Hattori et al.. Differential phase X-ray imaging microscopy with X-ray Talbot interferometer[J]. Appl. Phys. Express, 2008, 1(11): 117002

    [14] W. Yashiro, Y. Takeda, A. Takewchi et al.. Hard-X-ray phase-difference microscopy using a Fresnel zone plate and a transmission grating[J]. Phys. Rev. Lett., 2009, 103(18): 180801

    [15] T. Koyama, Y. Kagoshima, I. Wada et al.. High-spatial-resolution phase measurement by micro-interferometry using a hard X-ray imaging microscope[J]. Jpn. J. Appl. Phys., 2004, 43(3B): L421~L423

    [16] T. Koyama, T. Tsuji, H. Takano et al.. Hard X-ray nano-interferometer and its application to high-spatial-resolution phase tomography[J]. Jpn. J. Appl. Phys., 2006, 45(43): L1159~L1161

    [17] Y. Suzuki, A. Takeuchi. Hard X-ray holographic microscopy using refractive prism and Fresnel zone plate objective[J]. Rev. Sci. Instrum., 2005, 76(9): 093702

    [18] Y. Suzuki, A. Takeuchi. X-ray holographic microscopy using total-reflection mirror interferometer[J]. Jpn. J. Appl. Phys., 2008, 47(11): 8595~8599

    [19] Mu Guoguang, Zhan Yuanling. Optics [M]. Beijing: People′s Education Press, 1978. 395~397

    [20] R. Allen, G. David, G. Nomarski. The Zeiss-Nomarski differenctial interference equipment for transmitted-light microscopy[J]. Z. Wiss. Mikr., 1969, 69(4): 193~221

    [21] C. David, B. Nhammer, H. H. Solak et al.. Differenctial X-ray phase contrast imaging using a shearing interferometer[J]. Appl. Phys. Lett., 2002, 81(17): 3287~3289

    [22] Han Yueping, Chen Zhiqiang, Zhang Li et al.. Developments of X-ray grating imaging based on Talbot interferometry[J]. Laser & Optoelectronics Progress, 2012, 49(7): 070002

    [23] Huang Jianheng, Lin Danying, Liu Zhenwei et al.. Analysis and simulation of mid-energy X-ray grating phase contrast microscopy imaging[J]. Acta Optica Sinica, 2011, 31(10): 1034001

    [24] Hua Wenqiang, Bian Fenggang, Song Li et al.. Fractional Talbot effect of phase gratings illuminated by partially coherent synchrotron radiation[J]. Acta Optica Sinica, 2013, 33(1): 0134001

    [25] E. Leith, J. Upatnieks. Reconstructed wavefronts and communication theory[J]. J. Opt. Soc. Am., 1962, 52(10): 1123~1128

    [26] T. Salditt, K. Giewekemeyer, C. Fuhse et al.. Projection phase contrast microscopy with a hard X-ray nanofocused beam: defocus and contrast transfer[J]. Phys. Rev. B, 2009, 79(18): 184112

    [27] D. Pelliccia, A. Sorrentino, I. Bukreeva et al.. X-ray phase contrast microscopy at 300 nm resolution with laboratory sources[J]. Opt. Express, 2010, 18(15): 15998~16004

    [28] Xue Yanling, Xiao Tiqiao, Du Guohao et al.. Microscopic identification of panax quinquefolium and panax ginseng by X-ray phase contrast imaging[J]. Acta Optica Sinica, 2008, 28(9): 1828~1832

    [29] J. Choi, Y. S. Park. X-ray phase imaging microscopy with two-dimensional knife-edge filters[J]. Appl. Phys. Express, 2012, 5(4): 042503

    CLP Journals

    [1] Han Yueping, Li Ruihong. Study of Optical Performance Measurement Method for X-Ray Scintillation Crystals[J]. Laser & Optoelectronics Progress, 2014, 51(6): 61206

    [2] Han Yueping, Li Ruihong. Study on Automatic Test of the Assembly Structures Inside Products Based on X-Ray Stereoscopic Vision[J]. Laser & Optoelectronics Progress, 2013, 50(12): 121104

    Chen Jianzhao, Lin Danying, Huang Jianheng, Liu Zhenwei, Niu Hanben. Research Progress of Phase Contrast Methods for High-Resolution X-Ray Microscope[J]. Laser & Optoelectronics Progress, 2013, 50(6): 60004
    Download Citation