• Photonics Research
  • Vol. 10, Issue 5, 1194 (2022)
Jinchao Tong1、4, Heng Luo2, Fei Suo1, Tianning Zhang1, Dawei Zhang3, and Dao Hua Zhang1、*
Author Affiliations
  • 1School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
  • 2School of Physics and Electronics, Central South University, Changsha 410083, China
  • 3Ministry of Education and Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 4e-mail: jctong64@163.com
  • show less
    DOI: 10.1364/PRJ.444354 Cite this Article Set citation alerts
    Jinchao Tong, Heng Luo, Fei Suo, Tianning Zhang, Dawei Zhang, Dao Hua Zhang. Epitaxial indium antimonide for multiband photodetection from IR to millimeter/terahertz wave[J]. Photonics Research, 2022, 10(5): 1194 Copy Citation Text show less
    References

    [1] A. Rogalski. Infrared and Terahertz Detectors(2019).

    [2] R. A. Lewis. A review of terahertz detectors. J. Phys. D, 52, 433001(2019).

    [3] K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, M. B. Johnston. Single nanowire photoconductive terahertz detectors. Nano Lett., 15, 206-210(2015).

    [4] K. Peng, D. Jevtics, F. Zhang, S. Sterzl, D. A. Damry, M. U. Rothmann, B. Guilhabert, M. J. Strain, H. H. Tan, L. M. Herz, L. Fu, M. D. Dawson, A. Hurtado, C. Jagadish, M. B. Johnston. Three-dimensional cross-nanowire networks recover full terahertz state. Science, 368, 510-513(2020).

    [5] N. Wang, S. Cakmakyapan, Y.-J. Lin, H. Javadi, M. Jarrahi. Room-temperature heterodyne terahertz detection with quantum-level sensitivity. Nat. Astron., 3, 977-982(2019).

    [6] H. W. Hou, Z. Liu, J. H. Teng, T. Palacios, S. J. Chua. High temperature terahertz detectors realized by a GaN high electron mobility transistor. Sci. Rep., 7, 46664(2017).

    [7] P. L. Richards. Bolometers for IR and millimeter waves. J. Appl. Phys., 76, 1-24(1994).

    [8] F. Sizov. Terahertz radiation detectors: the state-of-the-art. Semicond. Sci. Technol., 33, 123001(2018).

    [9] . Golay detectors.

    [10] A. Rogalski, M. Kopytko, P. Martyniuk. Two-dimensional infrared and terahertz detectors: outlook and status. Appl. Phys. Rev., 6, 021316(2019).

    [11] Q. Qiu, Z. Huang. Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv. Mater., 33, 2008126(2021).

    [12] V. Giannini, A. Berrier, S. A. Maier, J. A. Sánchez-Gil, J. G. Rivas. Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies. Opt. Express, 18, 2797-2807(2010).

    [13] L. Deng, J. Teng, H. Liu, Q. Y. Wu, J. Tang, X. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon, S. J. Chua. Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings. Adv. Opt. Mater., 1, 128-132(2013).

    [14] S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, S. A. Maier. Broadband terahertz plasmonic response of touching InSb disks. Adv. Mater., 24, OP226-OP230(2012).

    [15] R. Parthasarathy, A. Bykhovski, B. Gelmont, T. Globus, N. Swami, D. Woolard. Enhanced coupling of subterahertz radiation with semiconductor periodic slot arrays. Phys. Rev. Lett., 98, 153906(2007).

    [16] G. Jaime, C. Janke, P. H. Bolivar, H. Kurz. Transmission of THz radiation through InSb gratings of subwavelength apertures. Opt. Express, 13, 847-859(2005).

    [17] R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, H. A. Atwater. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun., 5, 5788(2014).

    [18] C. Clavero. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics, 8, 95-103(2014).

    [19] J. Lehmann, M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, G. Gerber. Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission. Phys. Rev. Lett., 85, 2921-2924(2000).

    [20] K. Wu, J. Chen, J. R. McBride, T. Lian. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science, 349, 632-635(2015).

    [21] M. W. Knight, H. Sobhani, P. Nordlander, N. J. Halas. Photodetection with active optical antennas. Science, 332, 702-704(2011).

    [22] A. Giugni, B. Torre, A. Toma, M. Francardi, M. Malerba, A. Alabastri, R. Proietti Zaccaria, M. I. Stockman, E. Di Fabrizio. Hot-electron nanoscopy using adiabatic compression of surface plasmons. Nat. Nanotechnol., 8, 845-852(2013).

    [23] J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, D. H. Zhang. Surface plasmon induced direct detection of long wavelength photons. Nat. Commun., 8, 1660(2017).

    [24] J. Tong, F. Suo, T. Zhang, Z. Huang, J. Chu, D. H. Zhang. Plasmonic semiconductor nanogroove array enhanced broad spectral band millimetre and terahertz wave detection. Light Sci. Appl., 10, 58(2021).

    [25] C. Balanis. Antenna Theory: Analysis and Design(2016).

    [26] R. DuHamel, F. Ore. Logarithmically periodic antenna designs. IRE International Convention Record, 6, 139-151(2005).

    [27] L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, A. Tredicucci. Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater., 11, 865-871(2012).

    [28] L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, M. S. Vitiello. Black phosphorus terahertz photodetectors. Adv. Mater., 27, 5567-5572(2015).

    [29] Y. Li, Y. Zhang, T. Li, M. Li, Z. Chen, Q. Li, H. Zhao, Q. Sheng, W. Shi, J. Yao. Ultrabroadband, ultraviolet to terahertz, and high sensitivity CH3NH3PbI3 perovskite photodetectors. Nano Lett., 20, 5646-5654(2020).

    [30] Y. Chen, Y. Wang, Z. Wang, Y. Gu, Y. Ye, X. Chai, J. Ye, Y. Chen, R. Xie, Y. Zhou, Z. Hu, Q. Li, L. Zhang, F. Wang, P. Wang, J. Miao, J. Wang, X. Chen, W. Lu, P. Zhou, W. Hu. Unipolar barrier photodetectors based on van der Waals heterostructures. Nat. Electron., 4, 357-363(2021).

    [31] Y. Fang, A. Armin, P. Meredith, J. Huang. Accurate characterization of next-generation thin-film photodetectors. Nat. Photonics, 13, 1-4(2019).

    [32] . InSb photoconductive detectors.

    [33] . InAsSb photovoltaic detectors.

    [34] Thorlabs, “Mid-IR. Thorlabs, “Mid-IR photovoltaic detectors. https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=11319

    [35] J. Yan, M. H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, H. D. Drew. Dual-gated bilayer graphene hot-electron bolometer. Nat. Nanotechnol., 7, 472-478(2012).

    [36] Virginia Diodes,. Detectors.

    [37] D. Pozar. Considerations for millimeter wave printed antennas. IEEE Trans. Antennas Propag., 31, 740-747(1983).

    [38] A. Dhiflaoui, A. Yahyaoui, J. Yousaf, T. Aguili, B. Hakim, H. Rmili, R. Mittra. Full wave numerical analysis of wideband and high directive log spiral THz photoconductive antenna. Int. J. Numer. Model. Electron. Netw. Devices Fields, 33, e2761(2020).

    [39] M. Sakhno, J. Gumenjuk-Sichevska, F. Sizov. Modeling of the substrate influence on multielement THz detector operation. J. Infrared Millim. Terahertz Waves, 35, 703-719(2014).

    [40] T. K. Nguyen, T. A. Ho, H. Han, I. Park. Numerical study of self-complementary antenna characteristics on substrate lenses at terahertz frequency. J. Infrared Millim. Terahertz Waves, 33, 1123-1137(2012).

    [41] E. N. Grossman, A. J. Miller. Active millimeter-wave imaging for concealed weapons detection. Proc. SPIE, 5077, 62(2003).

    [42] X.-C. Tu, L. Kang, X.-H. Liu, Q.-K. Mao, C. Wan, J. Chen, B.-B. Jin, Z.-M. Ji, W.-W. Xu, P.-H. Wu. Nb5N6 microbolometer arrays for terahertz detection. Chin. Phys. B, 22, 040701(2013).

    [43] I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, J. Trontelj. Spectroscopic terahertz imaging at room temperature employing microbolometer terahertz sensors and its application to the study of carcinoma tissues. Sensors, 16, 432(2016).

    [44] D. Rutledge, S. Schwarz. Planar multimode detector arrays for infrared and millimeter-wave applications. IEEE J. Quantum Electron., 17, 407-414(1981).

    [45] QMC Instruments. Terahertz pyroelectric detectors.

    [46] R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, M. S. Shur. Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power. Appl. Phys. Lett., 89, 253511(2006).

    [47] U. R. Pfeiffer, E. Ojefors. Terahertz imaging with CMOS/BiCMOS process technologies. Proceedings of European Solid State Circuits Conference (ESSCIRC), 52-60(2010).

    [48] E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, C. Jagadish. Polarization-sensitive terahertz detection by multicontact photoconductive receivers. Appl. Phys. Lett., 86, 254102(2005).

    [49] Z. Zhang, R. Rajavel, P. Deelman, P. Fay. Sub-micron area heterojunction backward diode millimeter-wave detectors with 0.18  pW/Hz1/2 noise equivalent power. IEEE Microw. Wirel. Components Lett., 21, 267-269(2011).

    [50] Y. Kurita, G. Ducournau, D. Coquillat, A. Satou, K. Kobayashi, S. B. Tombet, Y. M. Meziani, V. V. Popov, W. Knap, T. Suemitsu, T. Otsuji. Ultrahigh sensitive sub-terahertz detection by InP-based asymmetric dual-grating-gate high-electron-mobility transistors and their broadband characteristics. Appl. Phys. Lett., 104, 251114(2014).

    Jinchao Tong, Heng Luo, Fei Suo, Tianning Zhang, Dawei Zhang, Dao Hua Zhang. Epitaxial indium antimonide for multiband photodetection from IR to millimeter/terahertz wave[J]. Photonics Research, 2022, 10(5): 1194
    Download Citation