• Photonics Research
  • Vol. 11, Issue 2, 252 (2023)
Anna Fedotova1,2,*, Mohammadreza Younesi2, Maximilian Weissflog2,3, Dennis Arslan1,2..., Thomas Pertsch2,3,4, Isabelle Staude1,2,3 and Frank Setzpfandt2,4|Show fewer author(s)
Author Affiliations
  • 1Institute of Solid State Physics, Friedrich Schiller University Jena, 07743 Jena, Germany
  • 2Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, 07745 Jena, Germany
  • 3Max Planck School of Photonics, 07745 Jena, Germany
  • 4Fraunhofer Institute for Applied Optics and Precision Engineering, 07745 Jena, Germany
  • show less
    DOI: 10.1364/PRJ.475616 Cite this Article Set citation alerts
    Anna Fedotova, Mohammadreza Younesi, Maximilian Weissflog, Dennis Arslan, Thomas Pertsch, Isabelle Staude, Frank Setzpfandt, "Spatially engineered nonlinearity in resonant metasurfaces," Photonics Res. 11, 252 (2023) Copy Citation Text show less
    References

    [1] A. Fedotova, M. Younesi, J. Sautter, A. Vaskin, F. J. Löchner, M. Steinert, R. Geiss, T. Pertsch, I. Staude, F. Setzpfandt. Second-harmonic generation in resonant nonlinear metasurfaces based on lithium niobate. Nano Lett., 20, 8608-8614(2020).

    [2] P. P. Vabishchevich, S. Liu, M. B. Sinclair, G. A. Keeler, G. M. Peake, I. Brener. Enhanced second-harmonic generation using broken symmetry III–V semiconductor Fano metasurfaces. ACS Photon., 5, 1685-1690(2018).

    [3] V. F. Gili, L. Carletti, A. Locatelli, D. Rocco, M. Finazzi, L. Ghirardini, I. Favero, C. Gomez, A. Lemaître, M. Celebrano, C. De Angelis. Monolithic AlGaAs second-harmonic nanoantennas. Opt. Express, 24, 15965-15971(2016).

    [4] F. J. Löchner, R. Mupparapu, M. Steinert, A. George, Z. Tang, A. Turchanin, T. Pertsch, I. Staude, F. Setzpfandt. Controlling second-harmonic diffraction by nano-patterning MoS2 monolayers. Opt. Express, 27, 35475-35484(2019).

    [5] D. Rocco, A. Zilli, A. Ferraro, A. Borne, V. Vinel, G. Leo, A. Lemaître, C. Zucchetti, M. Celebrano, R. Caputo, C. De Angelis. Tunable second harmonic generation by an all-dielectric diffractive metasurface embedded in liquid crystals. New J. Phys., 24, 045002(2022).

    [6] G. Marino, D. Rocco, C. Gigli, G. Beaudoin, K. Pantzas, S. Suffit, P. Filloux, I. Sagnes, G. Leo, C. De Angelis. Harmonic generation with multi-layer dielectric metasurfaces. Nanophotonics, 10, 1837-1843(2021).

    [7] R. Sarma, J. Xu, D. de Ceglia, L. Carletti, J. Klem, M. A. Belkin, I. Brener. Control of second-harmonic generation in all-dielectric intersubband metasurfaces by controlling the polarity of χ(2). Opt Express, 30, 34533-34544(2022).

    [8] L. Carletti, A. Zilli, F. Moia, A. Toma, M. Finazzi, C. De Angelis, D. N. Neshev, M. Celebrano. Steering and encoding the polarization of the second harmonic in the visible with a monolithic LiNbO3 metasurface. ACS Photon., 8, 731-737(2021).

    [9] J. Ma, F. Xie, W. Chen, J. Chen, W. Wu, W. Liu, Y. Chen, W. Cai, M. Ren, J. Xu. Nonlinear lithium niobate metasurfaces for second harmonic generation. Laser Photon. Rev., 15, 2000521(2021).

    [10] T. Santiago-Cruz, A. Fedotova, V. Sultanov, M. A. Weissflog, D. Arslan, M. Younesi, T. Pertsch, I. Staude, F. Setzpfandt, M. Chekhova. Photon pairs from resonant metasurfaces. Nano Lett., 21, 4423-4429(2021).

    [11] J. Zhang, J. Ma, M. Parry, M. Cai, R. Camacho-Morales, L. Xu, D. N. Neshev, A. A. Sukhorukov. Spatially entangled photon pairs from lithium niobate nonlocal metasurfaces. Sci. Adv., 8, eabq4240(2022).

    [12] V. Y. Shur, A. Akhmatkhanov, I. Baturin. Micro-and nano-domain engineering in lithium niobate. Appl. Phys. Rev., 2, 040604(2015).

    [13] G. Schreiber, D. Hofmann, W. Grundkoetter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, W. Sohler. Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides. Proc. SPIE, 4277, 144-160(2001).

    [14] C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, M. Lončar. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 5, 1438-1441(2018).

    [15] J. Lin, F. Bo, Y. Cheng, J. Xu. Advances in on-chip photonic devices based on lithium niobate on insulator. Photon. Res., 8, 1910-1936(2020).

    [16] P. Mutter, K. M. Mølster, A. Zukauskas, V. Pasiskevicius, C. Canalias. Highly-efficient first-order backward second-harmonic generation in periodically poled Rb-doped KTP with a period of 317  nm. Optica Advanced Photonics Congress, NpTu1G.1(2022).

    [17] M. Conforti, C. De Angelis, U. K. Sapaev, G. Assanto. Pulse shaping via backward second harmonic generation. Opt. Express, 16, 2115-2121(2008).

    [18] M. Lauritano, A. Parini, G. Bellanca, S. Trillo, M. Conforti, A. Locatelli, C. De Angelis. Bistability, limiting, and self-pulsing in backward second-harmonic generation: a time-domain approach. J. Opt. A, 8, S494(2006).

    [19] C. Canalias, V. Pasiskevicius. Mirrorless optical parametric oscillator. Nat. Photonics, 1, 459-462(2007).

    [20] A. C. Nutt, V. Gopalan, M. C. Gupta. Domain inversion in LiNbO3 using direct electron-beam writing. Appl. Phys. Lett., 60, 2828-2830(1992).

    [21] D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, S. Zhu. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nat. Photonics, 12, 596-600(2018).

    [22] G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, M. Molotskii. Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy. Appl. Phys. Lett., 82, 103-105(2003).

    [23] V. Berger. Nonlinear photonic crystals. Phys. Rev. Lett., 81, 4136-4139(1998).

    [24] A. Arie, N. Voloch. Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals. Laser Photon. Rev., 4, 355-373(2010).

    [25] N. Broderick, G. Ross, H. Offerhaus, D. Richardson, D. Hanna. Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal. Phys. Rev. Lett., 84, 4345-4348(2000).

    [26] J. Zhao, M. Rüsing, M. Roeper, L. M. Eng, S. Mookherjea. Poling thin-film x-cut lithium niobate for quasi-phase matching with sub-micrometer periodicity. J. Appl. Phys., 127, 193104(2020).

    [27] J. T. Nagy, R. M. Reano. Submicrometer periodic poling of lithium niobate thin films with bipolar preconditioning pulses. Opt. Mater. Express, 10, 1911-1920(2020).

    [28] M. Younesi, R. Geiss, S. Rajaee, F. Setzpfandt, Y.-H. Chen, T. Pertsch. Periodic poling with a micrometer-range period in thin-film lithium niobate on insulator. J. Opt. Soc. Am. B, 38, 685-691(2021).

    [29] B. Slautin, H. Zhu, V. Y. Shur. Submicron periodical poling in z-cut lithium niobate thin films. Ferroelectrics, 576, 119-128(2021).

    [30] Y. Dong, Q. Dong. Precise control of nanodomain size in LiNbO3. Mater. Res. Express, 5, 035004(2018).

    [31] V. E. Babicheva, A. B. Evlyukhin. Multipole lattice effects in high refractive index metasurfaces. J. Appl. Phys., 129, 040902(2021).

    [32] V. Zakomirnyi, A. Ershov, V. Gerasimov, S. Karpov, H. Ågren, I. Rasskazov. Collective lattice resonances in arrays of dielectric nanoparticles: a matter of size. Opt. Lett., 44, 5743-5746(2019).

    [33] L. Ciarella, A. Tognazzi, F. Mangini, C. De Angelis, L. Pattelli, F. Frezza. Finite-size and illumination conditions effects in all-dielectric metasurfaces. Electronics, 11, 1017(2022).

    [34] Y. Yang, I. I. Kravchenko, D. P. Briggs, J. Valentine. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun., 5, 5753(2014).

    [35] S. Campione, S. Liu, L. I. Basilio, L. K. Warne, W. L. Langston, T. S. Luk, J. R. Wendt, J. L. Reno, G. A. Keeler, I. Brener, M. B. Sinclair. Broken symmetry dielectric resonators for high quality factor Fano metasurfaces. ACS Photon., 3, 2362-2367(2016).

    [36] I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, R. Ito. Absolute scale of second-order nonlinear-optical coefficients. J. Opt. Soc. Am. B, 14, 2268-2294(1997).

    [37] R. W. Boyd. Nonlinear Optics(2019).

    [38] F. Timpu, J. Sendra, C. Renaut, L. Lang, M. Timofeeva, M. T. Buscaglia, V. Buscaglia, R. Grange. Lithium niobate nanocubes as linear and nonlinear ultraviolet Mie resonators. ACS Photon., 6, 545-552(2019).

    [39] X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, Y. Sheng. Ferroelectric domain engineering by focused infrared femtosecond pulses. Appl. Phys. Lett., 107, 141102(2015).

    [40] X. Xu, T. Wang, P. Chen, C. Zhou, J. Ma, D. Wei, H. Wang, B. Niu, X. Fang, D. Wu, S. Zhu, M. Gu, M. Xiao, Y. Zhang. Femtosecond laser writing of lithium niobate ferroelectric nanodomains. Nature, 609, 496-501(2022).

    [41] A. Chowdhury, H. M. Ng, M. Bhardwaj, N. G. Weimann. Second-harmonic generation in periodically poled GaN. Appl. Phys. Lett., 83, 1077-1079(2003).

    [42] A. Boes, V. Sivan, G. Ren, D. Yudistira, S. Mailis, E. Soergel, A. Mitchell. Precise, reproducible nano-domain engineering in lithium niobate crystals. Appl. Phys. Lett., 107, 022901(2015).

    [43] N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, A. Arie. Twisting light by nonlinear photonic crystals. Phys. Rev. Lett., 108, 233902(2012).

    [44] D. Wei, C. Wang, X. Xu, H. Wang, Y. Hu, P. Chen, J. Li, Y. Zhu, C. Xin, X. Hu, Y. Zhang. Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals. Nat. Commun., 10, 4193(2019).

    [45] A. Shapira, R. Shiloh, I. Juwiler, A. Arie. Two-dimensional nonlinear beam shaping. Opt. Lett., 37, 2136-2138(2012).

    Anna Fedotova, Mohammadreza Younesi, Maximilian Weissflog, Dennis Arslan, Thomas Pertsch, Isabelle Staude, Frank Setzpfandt, "Spatially engineered nonlinearity in resonant metasurfaces," Photonics Res. 11, 252 (2023)
    Download Citation