• Infrared and Laser Engineering
  • Vol. 48, Issue 9, 918006 (2019)
She Yulai*, Zhou Dejian, and Chen Xiaoyong
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/irla201948.0918006 Cite this Article
    She Yulai, Zhou Dejian, Chen Xiaoyong. Optimization design of bending performance for ultralow loss hole assisted fiber[J]. Infrared and Laser Engineering, 2019, 48(9): 918006 Copy Citation Text show less
    References

    [1] Tanaka K, Ide S, Tsunoda Y, et al. High-bandwidth optical interconnect technologies for next-generation server systems [J]. IEEE Micro, 2013, 33(1): 6-13.

    [2] Zhou Dejian, Cheng Lei. The domestic and international research situation of photoelectric interconnection technology[J]. Advanced Materials Research, 2013, 760-762: 383-387.

    [3] Napierala M, Nasilowski T, BeresPawlik E, et al. Large-mode-area photonic crystal fiber with double lattice constant structure and low bending loss [J]. Optics Express, 2011, 19(23): 22628-22636.

    [4] Watekar P R, Ju S, Han W T. Single-mode optical fiber design with wide-band ultra-low bending-loss for FTTH application[J]. Optics Express, 2008, 16(2): 1180-1185.

    [5] Dong Fanlong, Zhao Fangzhou, Ge Tingwu, et al. Fiber bending impacts on beam quality of Yb-doped fiber laser [J]. Infrared and Laser Engineering, 2014, 43(11): 3565-3569. (in Chinese)

    [6] Gao Feng, Qin Li, Chen Yongyi, et al. Research progress of bent waveguide and its application [J].Chinese Optics, 2017, 10(2): 176-193. (in Chinese)

    [7] Wang Yanhong, Wang Gao, Hao Xiaojian. Reducing bandwidth of sapphire crystal fiber gratings based on rejecting higher order mode method [J]. Infrared and Laser Engineering, 2012, 41(11): 3075-3078. (in Chinese)

    [8] Zhang Huixin, Feng Lishuang. Design of twisted-pair type of frustrated total internal reflection passive fiber-optic liquid level sense measurement system [J]. Infrared and Laser Engineering, 2017, 46(12): 1217001.

    [9] Jiang Youchao, Ren Guobin, Lian Yudongn, et al. Multilayer-core fiber with a large mode area and a low bending loss [J]. Chinese Optics Letters, 2016, 14(12): 41-45.

    [10] Lian Yudong, Ren Guobin, Jiang Youchao, et al. Ultralow bending-loss trench-assisted single-mode optical fibers [J]. IEEE Photonics Technology Letters, 2017, 29(3): 346-349.

    [11] Ma Shaoshuo, Ning Tigang, Li Jing, et al. Design and analysis of a modified segmented cladding fiber with large mode area [J]. Optics & Laser Technology, 2017, 88: 172-179.

    [12] Ma Shaoshuo, Ning Tigang, Li Pei, et al. Bend-resistant large mode area fiber with novel segmented cladding [J]. Optics Laser Technology, 2018, 98: 113-120.

    [13] Yan Dexian, Zhang Haiwei, Xu Degang, et al. Numerical study of compact terahertz gas laser based on photonic crystal fiber cavity [J]. Journal of Lightwave Technology, 2016, 34(14): 3373-3378.

    [14] Kabir S, Razzak S M A. An enhanced effective mode area fluorine doped octagonal photonic crystal fiber with extremely low loss [J]. Photonics & Nanostructures, 2018, 29: 1-6.

    [15] Kabir S, Razzak S M A. Bending resistive improved effective mode area fluorine doped quadrilateral shaped core photonic crystal fiber for high power fiber lasers [J]. Optik, 2018, 162: 206-213.

    [16] Xu Zhongnan, Duan Kailiang, Liu Zejin, et al. Numerical analyses of splice losses of photonic crystal fibers[J]. Optics Communications, 2009, 282(23): 4527-4531.

    [17] Suzuki M, Tamura Y, Yamamoto Y, et al. Low-loss splice of large effective area fiber using fluorine-doped cladding standard effective area fiber[C]//Optical Fiber Communications Conference & Exhibition. IEEE, 2017: M2F.4.

    [18] Xiong Guoji, Huang Chunyue, Liang Ying, et al. Optimization design for TSV interconnect structure based on orthogonal experimental and grey relational analysis under random vibration load [J]. Transactions of the China Welding Institution, 2016, 37(7): 22-26.

    She Yulai, Zhou Dejian, Chen Xiaoyong. Optimization design of bending performance for ultralow loss hole assisted fiber[J]. Infrared and Laser Engineering, 2019, 48(9): 918006
    Download Citation