• Acta Optica Sinica
  • Vol. 36, Issue 12, 1227002 (2016)
Chen Kun*, Chen Shuxin, Wu Dewei, Wang Xi, and Shi Mi
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201636.1227002 Cite this Article Set citation alerts
    Chen Kun, Chen Shuxin, Wu Dewei, Wang Xi, Shi Mi. Analysis of Quantum Radar Cross Section of Curved Surface Target[J]. Acta Optica Sinica, 2016, 36(12): 1227002 Copy Citation Text show less
    References

    [1] Lu Tian′an, Li Hongping. Phase error compensation in airborne synthetic aperture lidar data processing[J]. Acta Optica Sinica, 2015, 35(8): 0801002.

    [2] Smith III J F. Quantum entangled radar theory and a correction method for the effects of the atmosphere on entanglement[C]. SPIE, 2009, 7342: 73420A.

    [3] Jiang K, Lee H, Gerry C C, et al. Super-resolving quantum radar: coherent-state sources with homodyne detection suffice to beat the diffraction limit[J]. Journal of Applied Physics, 2013, 114(19): 193102.

    [4] Dutton Z, Shapiro J H, Guha S. LADAR resolution improvement using receivers enhanced with squeezed-vacuum injection and phase-sensitive amplification[J]. Journal of the Optical Society of America B, 2010, 27(6): A63-A72.

    [5] Wasilousky P A, Smith K H, Glasser R, et al. Quantum enhancement of a coherent LADAR receiver using phase-sensitive amplification[C]. SPIE, 2011, 8163: 816305.

    [6] Santivanez C A, Guha S, Dutton Z, et al. Quantum enhanced lidar resolution with multi-spatial-mode phase sensitive amplification[C]. SPIE, 2011, 8163: 81630Z.

    [7] Lanzagorta M. Quantum radar[M]. San Rafael: Morgan & Claypool, 2011: 77-90.

    [8] Lloyd S. Enhanced sensitivity of photodetection via quantum illumination[J]. Science, 2008, 321(5895): 1463-1465.

    [9] Shapiro J H, Lloyd S. Quantum illumination versus coherent-state target detection[J]. New Journal of Physics, 2009, 11(6): 063045.

    [10] Tan S H, Erkmen B I, Giovannetti V, et al. Quantum illumination with Gaussian states[J]. Physical Review Letters, 2008, 101(25): 253601.

    [11] Guha S, Erkmen B I. Gaussian-state quantum-illumination receivers for target detection[J]. Physical Review A, 2009, 80(5): 052310.

    [12] Lanzagorta M. Quantum radar cross section[C]. SPIE, 2010, 7727: 77270K.

    [13] Liu K, Xiao H T, Fan H Q. Analysis and simulation of quantum radar cross section[J]. Chinese Physics Letters, 2014, 31(3): 034202.

    [14] Liu K, Xiao H T, Fan H Q, et al. Analysis of quantum radar cross section and its influence on target detection performance[J]. IEEE Photonics Technology Letters, 2014, 26(11): 1146-1149.

    [15] Xu Shilong, Hu Yihua, Zhao Nanxiang, et al. Impact of metal target′s atom lattice structure on its quantum radar cross-section[J]. Acta Physica Sinica, 2015, 64(15): 154203.

    [16] Zhu Yanju, Jiang Yuesong, Zhang Chonghui, et al. Fast computation of electromagnetic scattering characteristics from conducting targets using modified-physical optics and graphical electromagnetic computing[J]. Acta Physica Sinica, 2014, 63(16): 164202.

    [17] Muthukrishnan A, Scully M O, Zubairy M S. The photon wave function[C]. SPIE, 2005, 5866: 287-292.

    CLP Journals

    [1] XU Ze-hua, LI Wei, XU Qiang, ZHENG Jia-yi. Analysis of Quantum Radar Cross Section of Conical Composite Target[J]. Acta Photonica Sinica, 2018, 47(4): 429001

    Chen Kun, Chen Shuxin, Wu Dewei, Wang Xi, Shi Mi. Analysis of Quantum Radar Cross Section of Curved Surface Target[J]. Acta Optica Sinica, 2016, 36(12): 1227002
    Download Citation