• Opto-Electronic Engineering
  • Vol. 51, Issue 4, 240025-1 (2024)
Qinglei Luan1,2, Xinyu Chang1,2, Ye Wu1,2, Conglong Deng1,2,*..., Yanqiong Shi1,2 and Zihua Chen1,2|Show fewer author(s)
Author Affiliations
  • 1School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China
  • 2Anhui Province Key Laboratory of Intelligent Manufacturing of Construction Machinery, Hefei, Anhui 230601, China
  • show less
    DOI: 10.12086/oee.2024.240025 Cite this Article
    Qinglei Luan, Xinyu Chang, Ye Wu, Conglong Deng, Yanqiong Shi, Zihua Chen. PAW-YOLOv7: algorithm for detection of tiny floating objects in river channels[J]. Opto-Electronic Engineering, 2024, 51(4): 240025-1 Copy Citation Text show less
    References

    [1] L Yan, M Yamaguchi, N Noro et al. A novel two-stage deep learning-based small-object detection using hyperspectral images. Opt Rev, 26, 597-606(2019).

    [2] H Zhu, S Y Zhou, X Liu et al. Survey of single-stage object detection algorithms based on deep learning. Ind Control Comput, 36, 101-103(2023).

    [3] R Girshick. Fast R-CNN, 1440-1448(2015). https://doi.org/10.1109/ICCV.2015.169

    [4] S Q Ren, K M He, R Girshick et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans Patt Anal Mach Intellig, 39, 1137-1149(2017).

    [5] W Liu, D Anguelov, D Erhan et al. SSD: single shot MultiBox detector, 21-37(2016). https://doi.org/10.1007/978-3-319-46448-0_2

    [6] J Redmon, A Farhadi. YOLOv3: An incremental improvement(2018). https://doi.org/10.48550/arXiv.1804.02767

    [7] A Bochkovskiy, C Y Wang, H Y M Liao. YOLOv4: optimal speed and accuracy of object detection(2020). https://doi.org/10.48550/arXiv.2004.10934

    [8] X K Zhu, S C Lyu, X Wang et al. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios, 2778-2788(2021). https://doi.org/10.1109/ICCVW54120.2021.00312

    [9] L Ma, Y T Gou, T Lei et al. Small object detection based on multi-scale feature fusion using remote sensing images. Opto-Electron Eng, 49, 210363(2022).

    [10] Y Zhang, Y P Sun, Z Wang et al. YOLOv7-RAR for urban vehicle detection. Sensors, 23, 1801(2023).

    [11] X Chen, D L Peng, Y Gu. Real-time object detection for UAV images based on improved YOLOv5s. Opto-Electron Eng, 49, 210372(2022).

    [12] K L Lu, J Xue, C B Tao. Multi target tracking based on spatial mask prediction and point cloud projection. Opto-Electron Eng, 49, 220024(2022).

    [13] Z Xiao, F Wan, G B Lei et al. FL-YOLOv7: a lightweight small object detection algorithm in forest fire detection. Forests, 14, 1812(2023).

    [14] Y Sun, L Yi, S Li et al. PBA-YOLOv7: an object detection method based on an improved YOLOv7 network. Appl Sci, 13, 10436(2023).

    [15] X R Pan, C J Ge, R Lu et al. On the integration of self-attention and convolution, 805-815(2022). https://doi.org/10.1109/CVPR52688.2022.00089

    [16] C Li, A J Zhou, A B Yao. Omni-dimensional dynamic convolution(2022).

    [17] J R Chen, S H Kao, H He et al. Run, Don’t walk: chasing higher FLOPS for faster neural networks, 12021-12031(2023). https://doi.org/10.1109/CVPR52729.2023.01157

    [18] Z J Tong, Y H Chen, Z W Xu et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism(2023). https://doi.org/10.48550/arXiv.2301.10051

    [19] Y Lee, J W Hwang, S Lee et al. An energy and GPU-computation efficient backbone network for real-time object detection, 752-760(2019). https://doi.org/10.1109/CVPRW.2019.00103

    [20] C Y Wang, H Y M Liao, Y H Wu et al. CSPNet: A new backbone that can enhance learning capability of CNN, 1571-1580(2020). https://doi.org/10.1109/CVPRW50498.2020.00203

    [21] F Chollet. Xception: deep learning with depthwise separable convolutions, 1800-1807(2017). https://doi.org/10.1109/CVPR.2017.195

    [22] K Han, Y H Wang, Q Tian et al. GhostNet: more features from cheap operations, 1577-1586(2020). https://doi.org/10.1109/CVPR42600.2020.00165

    [23] B Yang, G Bender, Q V Le et al. CondConv: conditionally parameterized convolutions for efficient inference, 117(2019).

    [24] J Hu, L Shen, G Sun. Squeeze-and-excitation networks, 7132-7141(2018). https://doi.org/10.1109/CVPR.2018.00745

    [25] S Woo, J Park, J Y Lee et al. CBAM: convolutional block attention module, 3-19(2018). https://doi.org/10.1007/978-3-030-01234-2_1

    [26] I Bello, B Zoph, Q Le et al. Attention augmented convolutional networks, 3285-3294(2019). https://doi.org/10.1109/ICCV.2019.00338

    [27] H Rezatofighi, N Tsoi, J Gwak et al. Generalized intersection over union: a metric and a loss for bounding box regression, 658-666(2019). https://doi.org/10.1109/CVPR.2019.00075

    [28] Z H Zheng, P Wang, W Liu et al. Distance-IoU loss: faster and better learning for bounding box regression(2019). https://doi.org/10.1609/aaai.v34i07.6999

    [29] Z Gevorgyan. SIoU loss: more powerful learning for bounding box regression(2022). https://doi.org/10.48550/arXiv.2205.12740

    [30] Y W Cheng, J N Zhu, M X Jiang et al. FloW: a dataset and benchmark for floating waste detection in inland waters, 10933-10942(2021). https://doi.org/10.1109/ICCV48922.2021.01077

    [31] H Y Zhang, M Cissé, Y N Dauphin et al. mixup: Beyond empirical risk minimization(2017).

    Qinglei Luan, Xinyu Chang, Ye Wu, Conglong Deng, Yanqiong Shi, Zihua Chen. PAW-YOLOv7: algorithm for detection of tiny floating objects in river channels[J]. Opto-Electronic Engineering, 2024, 51(4): 240025-1
    Download Citation