• Infrared and Laser Engineering
  • Vol. 51, Issue 3, 20210969 (2022)
Junting Du, Bing Chang, Zhaoyu Li, Hao Zhang, Chenye Qin, Yong Geng, Teng Tan*, Heng Zhou*, and Baicheng Yao*
Author Affiliations
  • Key Laboratory of Optical Fiber Sensing and Communication (MOE), University of Electronic Science and Technology of China, Chengdu 611731, China
  • show less
    DOI: 10.3788/IRLA20210969 Cite this Article
    Junting Du, Bing Chang, Zhaoyu Li, Hao Zhang, Chenye Qin, Yong Geng, Teng Tan, Heng Zhou, Baicheng Yao. Mid-infrared optical frequency combs: Progress and applications (Invited)[J]. Infrared and Laser Engineering, 2022, 51(3): 20210969 Copy Citation Text show less
    References

    [1] S T Cundiff, J Ye. Colloquium: Femtosecond optical frequency combs. Reviews of Modern Physics, 75, 325-342(2003).

    [2] T Fortier, E Baumann. 20 years of developments in optical frequency comb technology and applications. Communica-tions Physics, 2, 153(2019).

    [3] A Schliesser, N Picqué, T W Hänsch. Mid-infrared frequency combs. Nature Photonics, 6, 440-449(2012).

    [4] Z Qin, T Hai, G Xie, et al. Black phosphorus Q-switched and mode-locked mid-infrared Er: ZBLAN fiber laser at 3.5 μm wavelength. Optics Express, 26, 8224(2018).

    [5] C Wei, Y Lyu, H Shi, et al. Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 μm based on carbon nanotube. IEEE Journal of Selected Topics in Quantum Electronics, 25, 1-6(2019).

    [6] F C Cruz, D L Maser, T Johnson, et al. Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy. Optics Express, 23, 26814(2015).

    [7] G Soboń, T Martynkien, P Mergo, et al. High-power frequency comb source tunable from 2.7 to 4.2 μm based on difference frequency generation pumped by an Yb-doped fiber laser. Optics Letters, 42, 1748(2017).

    [8] G Ycas, F R Giorgetta, E Baumann, et al. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm. Nature Photonics, 12, 202-208(2018).

    [9] C Bao, Z Yuan, L Wu, et al. Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy. Nature Communi-cations, 12, 6573(2021).

    [10] Y Jin, S M Cristescu, F J M Harren, et al. Femtosecond optical parametric oscillators toward real-time dual-comb spectroscopy. Applied Physics B, 119, 65-74(2015).

    [11] A V Muraviev, V O Smolski, Z E Loparo, et al. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs. Nature Photonics, 12, 209-214(2018).

    [12] D Grassani, E Tagkoudi, H Guo, et al. Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum. Nature Communications, 10, 1553(2019).

    [13] H Guo, W Weng, J Liu, et al. Nanophotonic supercontinuum-based mid-infrared dual-comb spectroscopy. Optica, 7, 1181(2020).

    [14] S Borri, G Insero, G Santambrogio, et al. High-precision molecular spectroscopy in the mid-infrared using quantum cascade lasers. Applied Physics B, 125, 18(2019).

    [15] B Meng, M Singleton, M Shahmohammadi, et al. Mid-infrared frequency comb from a ring quantum cascade laser. Optica, 7, 162(2020).

    [16] C Y Wang, T Herr, P Del’haye, et al. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators. Nature Communications, 4, 1345(2013).

    [17] M Yu, Y Okawachi, A G Griffith, et al. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nature Communications, 9, 1869(2018).

    [18] H A Haus. Mode-locking of lasers. IEEE Journal of Selected Topics in Quantum Electronics, 6, 1173-1185(2000).

    [19] G Chen, W Li, G Wang, et al. Generation of coexisting high-energy pulses in a mode-locked all-fiber laser with a nonlinear multimodal interference technique. Photonics Research, 7, 187(2019).

    [20] C Qin, K Jia, Q Li, et al. Electrically controllable laser frequency combs in graphene-fibre microresonators. Light: Science & Applications, 9, 185(2020).

    [21] S Kivisto, O G Okhotnikov. 600-fs mode-locked Tm–Ho-doped fiber laser synchronized to optical clock with optically driven semiconductor saturable absorber. IEEE Photonics Technology Letters, 23, 477-479(2011).

    [22] Q Wang, J Geng, T Luo, et al. Mode-locked 2 μm laser with highly thulium-doped silicate fiber. Optics Letters, 34, 3616(2009).

    [23] S Kivisto, T Hakulinen, M Guina, et al. Tunable Raman soliton source using mode-locked Tm–Ho fiber laser. IEEE Photonics Technology Letters, 19, 934-936(2007).

    [24] S Antipov, D D Hudson, A Fuerbach, et al. High-power mid-infrared femtosecond fiber laser in the water vapor transmission window. Optica, 3, 1373(2016).

    [25] R I Woodward, M R Majewski, S D Jackson. Mode-locked dysprosium fiber laser: Picosecond pulse generation from 2.97 to 3.30 μm. APL Photonics, 3, 116106(2018).

    [26] J Li, D D Hudson, Y Liu, et al. Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror. Optics Letters, 37, 3747(2012).

    [27] J Ma, Z Qin, G Xie, et al. Review of mid-infrared mode-locked laser sources in the 2.0 μm–3.5 μm spectral region. Applied Physics Reviews, 6, 021317(2019).

    [28] Y Wang, F Jobin, S Duval, et al. Ultrafast Dy3+: fluoride fiber laser beyond 3 μm. Optics Letters, 44, 395-398(2019).

    [29] S B Mirov, V V Fedorov, D V Martyshkin, et al. Progress in mid-IR Cr2+ and Fe2+ doped Ⅱ-Ⅵ materials and lasers [Invited]. Optical Materials Express, 1, 898(2011).

    [30] N Nagl, S Gröbmeyer, V Pervak, et al. Directly diode-pumped, Kerr-lens mode-locked, few-cycle Cr: ZnSe oscillator. Optics Express, 27, 24445(2019).

    [31] A V Pushkin, E A Migal, S Tokita, et al. Femtosecond graphene mode-locked Fe: ZnSe laser at 4.4 µm. Optics Letters, 45, 738(2020).

    [32] M P Frolov, V M Gordienko, Y V Korostelin, et al. Fe 2+ -doped CdSe single crystal: Growth, spectroscopic and laser properties, potential use as a 6 µm broadband amplifier. Laser Physics Letters, 14, 025001(2017).

    [33] M P Frolov, Y V Korostelin, V I Kozlovsky, et al. 2 mJ room temperature Fe: CdTe laser tunable from 5.1 to 6.3 μm. Optics Letters, 44, 5453(2019).

    [34] de Oliveira V Silva, A Ruehl, P Masłowski, et al. Intensity noise optimization of a mid-infrared frequency comb difference-frequency generation source. Optics Letters, 45, 1914(2020).

    [35] S M Foreman, D J Jones, J Ye. Flexible and rapidly configurable femtosecond pulse generation in the mid-IR. Optics Letters, 28, 370(2003).

    [36] J He, Y Li. Design of on-chip mid-IR frequency comb with ultra-low power pump in near-IR. Optics Express, 28, 30771(2020).

    [37] J Lu, J B Surya, X Liu, et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W. Optica, 6, 1455(2019).

    [38] L Chang, Y Li, N Volet, et al. Thin film wavelength converters for photonic integrated circuits. Optica, 3, 531(2016).

    [39] M Yan, P L Luo, K Iwakuni, et al. Mid-infrared dual-comb spectroscopy with electro-optic modulators. Light: Science & Applications, 6, 1-8(2017).

    [40] A J Lind, A Kowligy, H Timmers, et al. Mid-infrared frequency comb generation and spectroscopy with few-cycle pulses and χ(2) nonlinear optics. Physical Review Letters, 124, 133904(2020).

    [41] D T Reid, B J S Gale, J Sun. Frequency comb generation and carrier-envelope phase control in femtosecond optical parametric oscillators. Laser Physics, 18, 87-103(2008).

    [42] K Iwakuni, G Porat, T Q Bui, et al. Phase-stabilized 100 mW frequency comb near 10 μm. Applied Physics B, 124, 128(2018).

    [43] F Adler, K C Cossel, M J Thorpe, et al. Phase-stabilized, 15 W frequency comb at 2.8–4.8 μm. Optics Letters, 34, 1330(2009).

    [44] N Leindecker, A Marandi, R L Byer, et al. Octave-spanning ultrafast OPO with 2.6-6.1 µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser. Optics Express, 20, 7046(2012).

    [45] M Roiz, K Kumar, J Karhu, et al. Simple method for mid-infrared optical frequency comb generation with dynamic offset frequency tuning. APL Photonics, 6, 026103(2021).

    [46] C Erny, K Moutzouris, J Biegert, et al. Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 μm from a compact fiber source. Optics Letters, 32, 1138(2007).

    [47] L Maidment, P G Schunemann, D T Reid. Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator. Optics Letters, 41, 4261(2016).

    [48] M Vainio, J Karhu. Fully stabilized mid-infrared frequency comb for high-precision molecular spectroscopy. Optics Express, 25, 4190(2017).

    [49] Gale B J S, Sun J H, Reid D T. Composite frequency comb spanning 0.42.4 μm from a femtosecond Ti: Sapphire laser synchronously pumped optical parametric oscillat[C]2007 European Conference on Lasers ElectroOptics the International Quantum Electronics Conference, 2007.

    [50] R R Alfano, S L Shapiro. Emission in the region 4000 to 7000 Å via four-photon coupling in glass. Physical Review Letters, 24, 584(1970).

    [51] D M B Lesko, H Timmers, S Xing, et al. A six-octave optical frequency comb from a scalable few-cycle erbium fibre laser. Nature Photonics, 15, 281-286(2021).

    [52] J Yuan, Z Kang, F Li, et al. Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide. Journal of Lightwave Technology, IEEE, 35, 2994-3002(2017).

    [53] A S Kowligy, A Lind, D D Hickstein, et al. Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides. Optics Letters, 43, 1678(2018).

    [54] H Guo, C Herkommer, A Billat, et al. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides. Nature Photonics, 12, 330-335(2018).

    [55] J Faist, G Villares, G Scalari, et al. Quantum cascade laser frequency combs. Nanophotonics, 5, 272-291(2016).

    [56] M C Tatham, J F Ryan, C T Foxon. Time-resolved Raman measurements of intersubband relaxation in GaAs quantum wells. Physical Review Letters, 63, 1637-1640(1989).

    [57] C Y Wang, L Kuznetsova, V M Gkortsas, et al. Mode-locked pulses from mid-infrared quantum cascade lasers. Optics Express, 17, 12929(2009).

    [58] A Hugi, G Villares, S Blaser, et al. Mid-infrared frequency comb based on a quantum cascade laser. Nature, 492, 229-233(2012).

    [59] J Hillbrand, A M Andrews, H Detz, et al. Coherent injection locking of quantum cascade laser frequency combs. Nature Photonics, 13, 101-104(2019).

    [60] L Consolino, M Nafa, F Cappelli, et al. Fully phase-stabilized quantum cascade laser frequency comb. Nature Communications, 10, 2938(2019).

    [61] G Villares, J Faist. Quantum cascade laser combs: effects of modulation and dispersion. Optics Express, 23, 1651(2015).

    [62] N Henry, D Burghoff, Q Hu, et al. Temporal characteristics of quantum cascade laser frequency modulated combs in long wave infrared and THz regions. Optics Express, 26, 14201(2018).

    [63] N Opačak, B Schwarz. Theory of frequency-modulated combs in lasers with spatial hole burning, dispersion, and Kerr nonlinearity. Physical Review Letters, 123, 1-5(2019).

    [64] M Piccardo, B Schwarz, D Kazakov, et al. Frequency combs induced by phase turbulence. Nature, 582, 360-364(2020).

    [65] Komagata K, Shehzad A, Hamrouni M, et al. Allinfrared stabilized quantum cade laser frequency comb with 30kHz frequency stability at 7.7 μm[C]CLEO: Science Innovations 2021: STu1H.3.

    [66] H Zhou, Y Geng, W Cui, et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light: Science & Applications, 8, 50(2019).

    [67] W Wang, S T Chu, B E Little, et al. Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing. Scientific Reports, 6, 28501(2016).

    [68] Z Lu, H J Chen, W Wang, et al. Synthesized soliton crystals. Nature Communications, 12, 3179(2021).

    [69] P Del’haye, A Schliesser, O Arcizet, et al. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [70] T Herr, K Hartinger, J Riemensberger, et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nature Photonics, 6, 480-487(2012).

    [71] X Zhang, Y Zhao. Research progress of microresonator-based optical frequency combs. Acta Optica Sinica, 41, 0823014(2021).

    [72] B Yao, Y Liu, S Huang, et al. Broadband gate-tunable terahertz plasmons in graphene heterostructures. Nature Photon, 12, 22-28(2018).

    [73] P Del’haye, T Herr, E Gavartin, et al. Octave spanning tunable frequency comb from a microresonator. Physical Review Letters, 107, 063901(2011).

    [74] H J Chen, Q X Ji, H Wang, et al. Chaos-assisted two-octave-spanning microcombs. Nature Communications, 11, 2336(2020).

    [75] M Yu, Y Okawachi, A G Griffith, et al. Mode-locked mid-infrared frequency combs in a silicon microresonator. Optica, 3, 854(2016).

    [76] Y Xuan, Y Liu, L T Varghese, et al. High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation. Optica, 3, 1171(2016).

    [77] K Luke, Y Okawachi, M R E Lamont, et al. Broadband mid-infrared frequency comb generation in a Si(3)N(4) microresonator. Optics Letters, 40, 4823(2015).

    [78] Y Guo, J Wang, Z Han, et al. Power-efficient generation of two-octave mid-IR frequency combs in a germanium microresonator. Nanophotonics, 7, 1461-1467(2018).

    [79] S Jiang, C Guo, H Fu, et al. Mid-infrared Raman lasers and Kerr-frequency combs from an all-silica narrow-linewidth microresonator/fiber laser system. Optics Express, 28, 38304(2020).

    [80] M G Suh, Q F Yang, K Y Yang, et al. Microresonator soliton dual-comb spectroscopy. Science, 354, 600-603(2016).

    [81] P Su, Z Han, D Kita, et al. Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector. Applied Physics Letters, 114, 051103(2019).

    [82] D M Bailey, G Zhao, A J Fleisher. Precision spectroscopy of nitrous oxide isotopocules with a cross-dispersed spectrometer and a mid-Infrared frequency comb. Analytical Chemistry, 92, 13759-13766(2020).

    [83] M A Abbas, Q Pan, J Mandon, et al. Time-resolved mid-infrared dual-comb spectroscopy. Scientific Reports, 9, 17247(2019).

    [84] Q Liang, Y C Chan, P B Changala, et al. Ultrasensitive multispecies spectroscopic breath analysis for real-time health monitoring and diagnostics. Proceedings of the National Academy of Sciences, 118, e2105063118(2021).

    [85] H Lin, Z Luo, T Gu, et al. Mid-infrared integrated photonics on silicon: a perspective. Nanophotonics, 7, 393-420(2017).

    [86] L A Sterczewski, M Bagheri, C Frez, et al. Mid-infrared dual-comb spectroscopy with room-temperature bi-functional interband cascade lasers and detectors. Applied Physics Letters, 116, 141102(2020).

    [87] B Yao, S W Huang, Y Liu, et al. Gate-tunable frequency combs in graphene–nitride microresonators. Nature, 558, 410-414(2018).

    [88] T Tan, Z Yuan, H Zhang, et al. Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator. Nature Communications, 12, 6716(2021).

    [89] L Zhang, J Ding, H Zheng, et al. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. Nature Communications, 9, 1481(2018).

    [90] X Zhang, Q T Cao, Z Wang, et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nature Photonics, 13, 21-24(2019).

    [91] X Jiang, L Shao, S X Zhang, et al. Chaos-assisted broadband momentum transformation in optical microresonators. Science, 358, 344-347(2017).

    [92] S A Diddams, K Vahala, T Udem. Optical frequency combs: Coherently uniting the electromagnetic spectrum.. Science, 369, eaay3676(2020).

    [93] B Stern, X Ji, Y Okawachi, et al. Battery-operated integrated frequency comb generator. Nature, 562, 401-405(2018).

    [94] B Shen, L Chang, J Liu, et al. Integrated turnkey soliton microcombs. Nature, 582, 365-369(2020).

    [95] T Tan, C Peng, Z Yuan, et al. Predicting Kerr soliton combs in microresonators via deep neural networks. Journal of Lightwave Technology, 38, 6591-6599(2020).

    [96] X Xu, M Tan, B Corcoran, et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 589, 44-51(2021).

    [97] J Feldmann, N Youngblood, M Karpov, et al. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52-58(2021).

    CLP Journals

    [1] Yaohu Cui, Zixiong Wang, Yitong Xu, Xunhe Zuo, Yang Jiang, Jinlong Yu, Zhanhua Huang. Approach to generation of flat optical frequency comb using cascaded phase modulator and intensity modulator[J]. Infrared and Laser Engineering, 2023, 52(5): 20220756

    [2] Dongdong Han, Zeyang Fan, Kaili Ren, Yipeng Zheng, Tiantian Li, Zhanqiang Hui, Jiamin Gong. Automatic mode-locked fiber laser based on K-means algorithm[J]. Infrared and Laser Engineering, 2023, 52(5): 20220609

    Junting Du, Bing Chang, Zhaoyu Li, Hao Zhang, Chenye Qin, Yong Geng, Teng Tan, Heng Zhou, Baicheng Yao. Mid-infrared optical frequency combs: Progress and applications (Invited)[J]. Infrared and Laser Engineering, 2022, 51(3): 20210969
    Download Citation