• Infrared and Laser Engineering
  • Vol. 50, Issue 12, 20210623 (2021)
Chaojiang He1, Yanlin He1, Fei Luo1, and Lianqing Zhu1、2
Author Affiliations
  • 1Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, Beijing 100192, China
  • 2Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science and Technology University, Beijing 100016, China
  • show less
    DOI: 10.3788/IRLA20210623 Cite this Article
    Chaojiang He, Yanlin He, Fei Luo, Lianqing Zhu. Needle shape optical fiber measurement method introducing strain sensitivity matrix[J]. Infrared and Laser Engineering, 2021, 50(12): 20210623 Copy Citation Text show less
    Flowchart of shape reconstruction algorithm
    Fig. 1. Flowchart of shape reconstruction algorithm
    Schematic of a FBG sensor
    Fig. 2. Schematic of a FBG sensor
    (a) Pure bending model and (b) cross section of the sensing point
    Fig. 3. (a) Pure bending model and (b) cross section of the sensing point
    The moving coordinate system of the needle
    Fig. 4. The moving coordinate system of the needle
    Coordinate conversion
    Fig. 5. Coordinate conversion
    Integrated FBG design of needle for percutaneous intervention
    Fig. 6. Integrated FBG design of needle for percutaneous intervention
    FBG strain sensitivity calibration system
    Fig. 7. FBG strain sensitivity calibration system
    Needle optical fiber sensing shape measurement system. (a) PC; (b) Interrogator; (c) Optical fiber; (d) Needle; (e) Location hole;(f) Motion control; (g) Six axis displacement
    Fig. 8. Needle optical fiber sensing shape measurement system. (a) PC; (b) Interrogator; (c) Optical fiber; (d) Needle; (e) Location hole;(f) Motion control; (g) Six axis displacement
    Strain sensitivity for encapsulated FBG sensor
    Fig. 9. Strain sensitivity for encapsulated FBG sensor
    Wavelength shift of three fibers in different positions
    Fig. 10. Wavelength shift of three fibers in different positions
    Reconstruction results of needle under different deformation
    Fig. 11. Reconstruction results of needle under different deformation
    FiberFBGWavelength before embedded/nm Wavelength after embedded/nm
    a11525.81631525.7967
    21529.69331529.6742
    31533.76711533.7475
    41538.11461538.1146
    b11525.75751525.7575
    21529.83081529.8308
    31533.90421533.9042
    41537.82081537.8013
    c11525.97531525.9925
    21529.90921529.9092
    31533.76711533.7867
    41537.86001537.8600
    Table 1. Wavlength shift of different FBGs before and after integrating needle
    FiberFBGFBG strain sensitivity/ $\mathrm{p}\mathrm{m}\cdot {\mathrm{{\text{µ}} }\mathrm{\varepsilon } }^{-1}$FBG strain sensitivity after embedded/ $\mathrm{p}\mathrm{m}\cdot {\mathrm{{\text{µ}} }\mathrm{\varepsilon } }^{-1}$
    a11.110.44
    21.120.79
    31.120.84
    41.120.84
    b11.130.56
    21.150.81
    31.140.83
    41.150.84
    c11.130.38
    21.140.77
    31.140.79
    41.150.78
    Table 2. Strain sensitivity of FBGs
    Deformation theoretical value/mm−3−6−9−12−15
    Shape reconstruction without sensitivity matrix/mm−2.181−5.920−10.684−14.498−18.918
    Absolute error/mm0.8190.081.6842.4983.918
    Relative error5.46%0.53%11.23%16.65%26.12%
    Shape reconstruction with sensitivity matrix/mm−2.896−5.667−8.538−11.425−14.399
    Absolute error/mm0.1040.3330.4620.5750.601
    Relative error0.69%2.22%3.08%3.83%4.01%
    Table 3. Deformation measured error analysis of X-axis
    Chaojiang He, Yanlin He, Fei Luo, Lianqing Zhu. Needle shape optical fiber measurement method introducing strain sensitivity matrix[J]. Infrared and Laser Engineering, 2021, 50(12): 20210623
    Download Citation