• Infrared and Laser Engineering
  • Vol. 48, Issue 8, 814006 (2019)
Tang Kun1、2, Li Dianyu1、2, Shu Yong1、2, Zhu Yongjian3, Wang Yu3, Zhang Mingjun1、2, and Mao Cong1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/irla201948.0814006 Cite this Article
    Tang Kun, Li Dianyu, Shu Yong, Zhu Yongjian, Wang Yu, Zhang Mingjun, Mao Cong. Simulation and experiment of non-isothermal hot pressing of small-diameter aspherical chalcogenide glass lens[J]. Infrared and Laser Engineering, 2019, 48(8): 814006 Copy Citation Text show less
    References

    [1] Jiang Bo, Wu Yuehao, Dai Shixun, et al. Application of chalcogenide glasses in designing vehicle-mounted infrared imaging lens for civilian applications[J]. Infrared and Laser Engineering, 2015, 44(6): 1740-1745. (in Chinese)

    [2] Ma K J, Chien H H. Contactless molding of arrayed chalcogenide glass lenses[J]. Journal of Non-Crystalline Solids, 2011, 357: 2484-2488.

    [3] Lee J H, Lee W H. Thermal properties of ternary Ge–Sb–Se chalcogenide glass for use in formed lens applications[J]. Journal of Non-Crystalline Solids, 2016, 431: 41-46.

    [4] Dai Shixun, Chen Huiguang, Li Maozhong, et al. Chalcogenide glasses and their infrared optical applications [J]. Infrared and Laser Engineering, 2012, 41(4): 847-852. (in Chinese)

    [5] Zhou Tianfeng, Xie Jiaqing, Liu Yang, et al. Simulation and experimental study on the molding process for microgrooveson optical glass [J]. Optics and Precision Engineering, 2016, 24(10): 446-453. (in Chinese)

    [6] Cogburn G, Symmons A. Molding aspheric lenses for low-cost production versus diamond turned lenses[C]//Proceedings of SPIE, 2010, 7660: 766020.

    [7] Zhou T F, Yan J W. Study on Nonisothermal glass molding press for aspherical lens[J]. Journal of Advanced Mechanical Design Systems and Manufacturing, 2010, 4(5): 806-815.

    [8] Zhu K J, Yin S H. Finite element analysis on non-isothermal glass molding[J]. Advanced Materials Research, 2012, 497: 240-244.

    [9] Zhang H B, Yu J X. Non-isothermal molding technology research of ultra-precision glass lens[C]// Proceedings of SPIE, 2014, 9295: 929517.

    [10] Ananthasayanam B, Joseph P F. Final shape of precision molded optics: Part I-Computational approach, material definitions and the effect of lens shape [J]. Journal of Thermal Stresses, 2012, 35(6): 550-578.

    [11] Yan J W, Zhou T F. Modeling high-temperature glass molding process by coupling heat transfer and viscous deformation analysis[J]. Precision Engineering, 2009, 33(2): 150-159.

    [12] Gaylord S, Ananthasayanam B. Thermal and structural property characterization of commercially moldable glasses[J]. Journal of the American Ceramic Society, 2010, 93(8): 2207-2214.

    [13] Arai M, Kato Y. Characterization of the thermo-viscoelastic property of glass and numerical simulation of the press molding of glass lens[J]. Journal of Thermal Stresses, 2009, 32(12): 1235-1255.

    [14] Wang F, Chen Y. Numerical simulation assisted curve compensation in compression molding of high precision aspherical glass lenses[J]. Journal of Manufacturing Science & Engineering, 2009, 131: 1-6.

    [15] Cheng X M, Xu D Y. Numerical analysis of compound aspheric lens design and fabrication[C]//Proceedings of SPIE, 2006, 6027: 60273Q.

    [16] Cha D H, Kim J H, Kim H J, et al. Experimental study of the fabrication of chalcogenide glass lenses by using precision glass molding [J]. Journal of the Korean Physical Society, 2014, 65(10): 1675-1681.

    [17] Hubei New Huaguang Information Materials CO., LTD (China). Optical glass[DB/OL].(2017-04) [2017-08-10]. http://www.hbnhg.com/down/data/9494829706.pdf.

    [18] Wang Xunsi, Chen Qiong, Fan Xinye, et al. Far infrared spectral studies of Ge-Sb-Se glasses [J]. Acta Photonica Sinica, 2008, 37(1): 81-85. (in Chinese)

    Tang Kun, Li Dianyu, Shu Yong, Zhu Yongjian, Wang Yu, Zhang Mingjun, Mao Cong. Simulation and experiment of non-isothermal hot pressing of small-diameter aspherical chalcogenide glass lens[J]. Infrared and Laser Engineering, 2019, 48(8): 814006
    Download Citation