• Photonics Research
  • Vol. 6, Issue 3, 204 (2018)
Hong-Jin Hu1, Fan-Wei Zhang1, Guo-Zhou Li1, Jun-Yi Chen1, Qiang Li1, and Li-Jun Wu1、2、*
Author Affiliations
  • 1Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
  • 2State Key Laboratory of Optoelectric Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
  • show less
    DOI: 10.1364/PRJ.6.000204 Cite this Article Set citation alerts
    Hong-Jin Hu, Fan-Wei Zhang, Guo-Zhou Li, Jun-Yi Chen, Qiang Li, Li-Jun Wu. Fano resonances with a high figure of merit in silver oligomer systems[J]. Photonics Research, 2018, 6(3): 204 Copy Citation Text show less
    References

    [1] C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater., 11, 69-75(2012).

    [2] Z. L. Deng, N. Yogesh, X. D. Chen, W. J. Chen, J. W. Dong, Z. B. Ouyang, G. P. Wang. Full controlling of Fano resonances in metal-slit superlattice. Sci. Rep., 5, 18461(2015).

    [3] A. N. Poddubny, M. V. Rybin, M. F. Limonov, Y. S. Kivshar. Fano interference governs wave transport in disordered systems. Nat. Commun., 3, 914(2012).

    [4] J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordler, F. Capasso. Fano-like interference in self-assembled plasmonic quadrumer clusters. Nano Lett., 10, 4680-4685(2010).

    [5] H. X. Xu, E. J. Bjerneld, M. Käll, L. Borjesson. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett., 83, 4357-4360(1999).

    [6] P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, D. W. Pohl. Resonant optical antennas. Science, 308, 1607-1609(2005).

    [7] J. N. Anker, W. P. Hall, O. Lyres, N. C. Shah, J. Zhao, R. P. Van Duyne. Biosensing with plasmonic nanosensors. Nat. Mater., 7, 442-453(2008).

    [8] K. M. Mayer, J. H. Hafner. Localized surface plasmon resonance sensors. Chem. Rev., 111, 3828-3857(2011).

    [9] Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, J. Wang. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat. Commun., 4, 2381(2013).

    [10] S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, N. J. Halas. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett., 13, 240-247(2013).

    [11] S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, R. A. Vaia. Plasmonic resonances in self-assembled reduced symmetry gold nanorod structures. Nano Lett., 13, 6287-6291(2013).

    [12] A. Ahmadiv, M. Karabiyik, N. Pala. Intensifying magnetic dark modes in the antisymmetric plasmonic quadrumer composed of AL/Al2O3 nanodisks with the placement of silicon nanospheres. Opt. Commun., 338, 218-225(2015).

    [13] F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, S. A. Maier. Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano, 3, 643-652(2009).

    [14] F. Neubrech, A. Pucci, T. Walter Cornelius, S. Karim, A. Garcia-Etxarri, J. Aizpurua. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Phys. Rev. Lett., 101, 157403(2008).

    [15] H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, S. A. Maier. Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas. ACS Nano, 7, 669-675(2012).

    [16] B. Gallinet, O. J. F. Martin. Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances. ACS Nano, 5, 8999-9008(2011).

    [17] J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordler, D. R. Liu, F. Capasso. DNA-enabled self-assembly of plasmonic nanoclusters. Nano Lett., 11, 4859-4864(2011).

    [18] F. Wang, Y. R. Shen. General properties of local plasmons in metal nanostructures. Phys. Rev. Lett., 97, 206806(2006).

    [19] L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, N. J. Halas. Heterodimers: plasmonic properties of mismatched nanoparticle pairs. ACS Nano, 4, 819-832(2010).

    [20] Z. J. Yang, Z. S. Zhang, W. Zhang, Z. H. Hao, Q. Q. Wang. Twinned Fano interferences induced by hybridized plasmons in Au-Ag nanorod heterodimers. Appl. Phys. Lett., 96, 13113(2010).

    [21] A. Lovera, B. Gallinet, P. Nordlander, O. J. F. Martin. Mechanisms of Fano resonances in coupled plasmonic systems. ACS Nano, 7, 4527-4536(2013).

    [22] N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, S. A. Maier. Fano resonances in individual coherent plasmonic nanocavities. Nano Lett., 9, 1663-1667(2009).

    [23] F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, P. Nordler. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett., 8, 3983-3988(2008).

    [24] S. P. Zhang, H. X. Xu. Tunable dark plasmons in a metallic nanocube dimer toward ultimate sensitivity nanoplasmonic sensors. Nanoscale, 8, 13722-13729(2016).

    [25] J. Chen, Q. Shen, Z. Chen, Q. Wang, C. Tang, Z. Wang. Multiple Fano resonances in monolayer hexagonal non-close-packed metallic shells. J. Chem. Phys., 136, 214703(2012).

    [26] D. Dregely, M. Hentschel, H. Giessen. Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters. ACS Nano, 5, 8202-8211(2011).

    [27] Y. Cui, J. Zhou, V. A. Tamma, W. Park. Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure. ACS Nano, 6, 2385-2393(2012).

    [28] S. D. Liu, Z. Yang, R. P. Liu, X. Y. Li. Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings. ACS Nano, 6, 6260-6271(2012).

    [29] S. D. Liu, Y. B. Yang, Z. H. Chen, W. J. Wang, H. M. Fei, M. J. Zhang, Y. C. Wang. Excitation of multiple Fano resonances in plasmonic clusters with D2h point group symmetry. J. Phys. Chem. C, 117, 14218-14228(2013).

    [30] Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, N. J. Halas. Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters. Nanoscale, 5, 9897-9901(2013).

    [31] Z. J. Yang, Q. Q. Wang, H. Q. Lin. Tunable two types of Fano resonances in metal-dielectric core-shell nanoparticle clusters. Appl. Phys. Lett., 103, 111115(2013).

    [32] J. Zhang, A. Zayats. Multiple Fano resonances in single-layer nonconcentric core-shell nanostructures. Opt. Express, 21, 8426-8436(2013).

    [33] J. Wang, C. Fan, J. He, P. Ding, E. Liang, Q. Xue. Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity. Opt. Express, 21, 2236-2244(2013).

    [34] Y. Zhang, T. Q. Jia, H. M. Zhang, Z. Z. Xu. Fano resonances in disk-ring plasmonic nanostructure: strong interaction between bright dipolar and dark multipolar mode. Opt. Lett., 37, 4919-4921(2012).

    [35] A. D. Khan, S. D. Khan, R. U. Khan, N. Ahmad. Excitation of multiple Fano-like resonances induced by higher order plasmon modes in three-layered bimetallic nanoshell dimer. Plasmonics, 9, 461-475(2014).

    [36] L. Y. Yin, Y. H. Huang, X. Wang, S. T. Ning, S. D. Liu. Double Fano resonances in nanoring cavity dimers: the effect of plasmon hybridization between dark subradiant modes. AIP Adv., 4, 077113(2014).

    [37] N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, H. Giessen. Three-dimensional plasmon rulers. Science, 332, 1407-1410(2011).

    [38] Y. H. Fu, J. B. Zhang, Y. F. Yu, B. Luk’yanchuk. Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures. ACS Nano, 6, 5130-5137(2012).

    [39] A. Artar, A. A. Yanik, H. Altug. Directional double Fano resonances in plasmonic hetero-oligomers. Nano Lett., 11, 3694-3700(2011).

    [40] M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, N. Liu. Plasmonic oligomers: the role of individual particles in collective behavior. ACS Nano, 5, 2042-2050(2011).

    [41] C. Wu, A. B. Khanikaev, G. Shvets. Broadband slow light metamaterial based on a double-continuum Fano resonance. Phys. Rev. Lett., 106, 107403(2011).

    [42] G. Z. Li, Q. Li, L. Xu, L. J. Wu. Double Fano resonances in plasmonic nanocross molecules and magnetic plasmon propagation. Nanoscale, 7, 19914-19920(2015).

    [43] P. B. Johnson, R. W. Christy. Optical-constants of noble-metals. Phys. Rev. B, 6, 4370-4379(1972).

    [44] S. Fan, W. Suh, J. D. Joannopoulos. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A, 20, 569-572(2003).

    [45] Z. Ruan, S. Fan. Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle. J. Phys. Chem. C, 114, 7324-7329(2010).

    [46] B. Gallinet, O. J. F. Martin. Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials. Phys. Rev. B, 83, 235427(2011).

    [47] Y. H. Zhan, D. Y. Lei, X. F. Li, S. A. Maier. Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing. Nanoscale, 6, 4705-4715(2014).

    [48] G. Z. Li, Q. Li, L. Xu, L. J. Wu. Numerical realization of Fano-type resonances in cascaded plasmonic heterodimers for refractive index sensing. Plasmonics, 10, 1401-1407(2015).

    [49] J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. Halas, V. Manoharan, P. Nordlander, G. Shvets, F. Capasso. Self-assembled plasmonic nanoparticle clusters. Science, 328, 1135-1138(2010).

    CLP Journals

    [1] Ai-Yun Li, Xing-Fang Zhang, Feng-Shou Liu, Xin Yan, Lan-Ju Liang. Fano resonances in symmetric gold nanorod trimers[J]. Acta Physica Sinica, 2019, 68(19): 197801-1

    Hong-Jin Hu, Fan-Wei Zhang, Guo-Zhou Li, Jun-Yi Chen, Qiang Li, Li-Jun Wu. Fano resonances with a high figure of merit in silver oligomer systems[J]. Photonics Research, 2018, 6(3): 204
    Download Citation