• Laser & Optoelectronics Progress
  • Vol. 57, Issue 15, 152303 (2020)
Yujin Wang, Jin Zhang*, Shilei Jiang, Guobin Sun, and Xuesong Ji
Author Affiliations
  • School of Optoelectronic Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, China
  • show less
    DOI: 10.3788/LOP57.152303 Cite this Article Set citation alerts
    Yujin Wang, Jin Zhang, Shilei Jiang, Guobin Sun, Xuesong Ji. Research on Symmetric Structure of Holographic Waveguide Coupling Elements[J]. Laser & Optoelectronics Progress, 2020, 57(15): 152303 Copy Citation Text show less
    Schematic of holographic waveguide plate optical path transmission. (a) Reflection coupling elements; (b) transmission coupling elements
    Fig. 1. Schematic of holographic waveguide plate optical path transmission. (a) Reflection coupling elements; (b) transmission coupling elements
    Schematic of recording and reproduction of transmissive coupling element. (a) Schematic of coupling element 1 recording; (b) schematic of coupling element 2 recording; (c) schematic of coupling element 1 reproduction; (d) schematic of coupling element 2 reproduction
    Fig. 2. Schematic of recording and reproduction of transmissive coupling element. (a) Schematic of coupling element 1 recording; (b) schematic of coupling element 2 recording; (c) schematic of coupling element 1 reproduction; (d) schematic of coupling element 2 reproduction
    Grating vector analysis diagram of projective coupling elements. (a) K vector circle analysis diagram of coupling element 1; (b) schematic of grating inclination of coupling element 1; (c) K vector circle analysis diagram of coupling element 2; (d) schematic of grating inclination of coupling element 2
    Fig. 3. Grating vector analysis diagram of projective coupling elements. (a) K vector circle analysis diagram of coupling element 1; (b) schematic of grating inclination of coupling element 1; (c) K vector circle analysis diagram of coupling element 2; (d) schematic of grating inclination of coupling element 2
    Grating vector analysis diagram of projective coupling elements. (a) K vector circle analysis diagram of coupling element 1; (b) schematic of the grating inclination of the coupling element 1; (c) K vector circle analysis diagram of coupling element 2; (d) schematic of the grating inclination of the coupling element 2
    Fig. 4. Grating vector analysis diagram of projective coupling elements. (a) K vector circle analysis diagram of coupling element 1; (b) schematic of the grating inclination of the coupling element 1; (c) K vector circle analysis diagram of coupling element 2; (d) schematic of the grating inclination of the coupling element 2
    Schematic of coupling element recording optical path. (a) Transmissive coupling element 1; (b) transmissive coupling element 2; (c) reflective coupling element 1; (d) reflective coupling element 2
    Fig. 5. Schematic of coupling element recording optical path. (a) Transmissive coupling element 1; (b) transmissive coupling element 2; (c) reflective coupling element 1; (d) reflective coupling element 2
    Interference light intensity simulation result of coupling element during recording. (a) Transmissive coupling element 1; (b) transmissive coupling element 2; (c) reflective coupling element 1; (d) reflective coupling element 2
    Fig. 6. Interference light intensity simulation result of coupling element during recording. (a) Transmissive coupling element 1; (b) transmissive coupling element 2; (c) reflective coupling element 1; (d) reflective coupling element 2
    Simulation results of cross-sectional electric field distribution when the coupling element is reproduced. (a) Transmissive coupling element 1; (b) transmissive coupling element 2; (c) reflective coupling element 1; (d) reflective coupling element 2
    Fig. 7. Simulation results of cross-sectional electric field distribution when the coupling element is reproduced. (a) Transmissive coupling element 1; (b) transmissive coupling element 2; (c) reflective coupling element 1; (d) reflective coupling element 2
    Influence of wavelength shift on grating constant and first-order diffraction angle. (a) Grating constant; (b) first-order diffraction angle
    Fig. 8. Influence of wavelength shift on grating constant and first-order diffraction angle. (a) Grating constant; (b) first-order diffraction angle
    Coupling elementWavelength /nmGrating constant /nmGrating angle /(°)Incident light angle /(°)
    1633589210
    2633589-21-42
    Table 1. Grating structure and incident light parameters of transmissive coupling element
    Coupling elementWavelength /nmGrating constant /nmGrating angle /(°)Incident light angle /(°)
    1633226-690
    263322669-42
    Table 2. Grating structure and incident light parameters of reflective coupling element
    Coupling elementVector xVector yFirst orderdiffraction angle /(°)Ideal first orderdiffraction angle /(°)
    19294652.828569437.2942.0042
    247310.22-1.38×1070.000
    Table 3. First-order diffracted light direction parameter of transmissive coupling element
    Coupling elementVector xVector yFirst orderdiffraction angle /(°)Ideal first orderdiffraction angle /(°)
    1-9962556.781.11×10742.0042
    2-172.121.49×1070.000
    Table 4. First-order diffracted light direction parameter of reflective coupling element
    Yujin Wang, Jin Zhang, Shilei Jiang, Guobin Sun, Xuesong Ji. Research on Symmetric Structure of Holographic Waveguide Coupling Elements[J]. Laser & Optoelectronics Progress, 2020, 57(15): 152303
    Download Citation