• Laser & Optoelectronics Progress
  • Vol. 54, Issue 3, 30001 (2017)
Qian Chenjiang1、*, Xie Xin1, Yang Jingnan1, Zhao Yanhui1, Tang Jing1, and Xu Xiulai1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop54.030001 Cite this Article Set citation alerts
    Qian Chenjiang, Xie Xin, Yang Jingnan, Zhao Yanhui, Tang Jing, Xu Xiulai. Coupling of Two-Dimensional Slab Photonic Crystal Micro-Cavities and Waveguides[J]. Laser & Optoelectronics Progress, 2017, 54(3): 30001 Copy Citation Text show less
    References

    [1] Krauss T F, Richard M, Brand S. Two-dimensional photonic-band gap structures operating at near-infrared wavelengths[J]. Nature, 1996, 383(6602): 699-702.

    [2] Zeng L, Yi Y, Hong C, et al. Efficiency enhancement in Si solar cells by textured photonic crystal back reflector[J]. Applied Physics Letters, 2006, 89(11): 111111.

    [3] Altug H, Englund D, VukoviJ. Ultrafast photonic crystal nanocavity laser[J]. Nature Physics, 2006, 2(7): 484-488.

    [4] Oulton R, Jones B D, Lam S, et al. Polarized quantum dot emission from photonic crystal nanocavities studied under mode resonant enhanced excitation[J]. Optics Express, 2007, 15(25): 17221-17230.

    [5] Akahane Y, Asano T, Song B S, et al. High-Q photonic nanocavity in a two-dimensional photonic crystal[J]. Nature, 2003, 425(6961): 944-947.

    [6] Yoshie T, Scherer A, Hendrickson J, et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity[J]. Nature, 2004, 432(7014): 200-203.

    [7] Hill M T, Dorren H J S, De Vries T, et al. A fast low-power optical memory based on coupled micro-ring lasers[J]. nature, 2004, 432(7014): 206-209.

    [8] Zhukovsky S V, Chigrin D N, Lavrinenko A V, et al. Switchable lasing in multimode microcavities[J]. Physical Review Letters, 2007, 99(7): 073902.

    [9] Ishii S, Baba T. Bistable lasing in twin microdisk photonic molecules[J]. Applied Physics Letters, 2005, 87(18): 181102.

    [10] Zhang Y, Zhang Y, Li B. Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals[J]. Optics Express, 2007, 15(15): 9287-9292.

    [11] Lee M R, Fauchet P M. Two-dimensional silicon photonic crystal based biosensing platform for protein detection[J]. Optics Express, 2007, 15(8): 4530-4535.

    [12] Carter S G, Sweeney T M, Kim M, et al. Quantum control of a spin qubit coupled to a photonic crystal cavity[J]. Nature Photonics, 2013, 7(4): 329-334.

    [13] Joannopoulos J D, Johnson S G, Winn J N, et al. Photonic crystals: molding the flow of light[M]. Princeton: Princeton University Press, 2011.

    [14] Purcel E M. Spontaneous emission probabilities at radio frequencies[J]. Physical Review, 1946, 340: 839.

    [15] Tandaechanurat A, Iwamoto S, Nomura M, et al. Increase of Q-factor in photonic crystal H1-defect nanocavities after closing of photonic bandgap with optimal slab thickness[J]. Optics Express, 2008, 16(1): 448-455.

    [16] Song B S, Noda S, Asano T, et al. Ultra-high-Q photonic double-heterostructure nanocavity[J]. Nature Materials, 2005, 4(3): 207-210.

    [17] Hu J X, Fang Y T. Self-trapped band and semi-opening movable cavity[J]. IEEE Journal of Quantum Electronics, 2016, 52(7): 1-7.

    [18] Mekis A, Chen J C, Kurland I, et al. High transmission through sharp bends in photonic crystal waveguides[J]. Physical Review Letters, 1996, 77(18): 3787-3790.

    [19] Vignolini S, Riboli F, Intonti F, et al. Mode hybridization in photonic crystal molecules[J]. Applied Physics Letters, 2010, 97(6): 063101.

    [20] Caselli N, Intonti F, Bianchi C, et al. Post-fabrication control of evanescent tunnelling in photonic crystal molecules[J]. Applied Physics Letters, 2012, 101(21): 211108.

    [21] Doty M F, Climente J I, Korkusinski M, et al. Antibonding ground states in InAs quantum-dot molecules[J]. Physical Review Letters, 2009, 102(4): 047401.

    [22] Caselli N, Intonti F, Riboli F, et al. Antibonding ground state in photonic crystal molecules[J]. Physical Review B, 2012, 86(3): 035133.

    [23] Atlasov K A, Karlsson K F, Rudra A, et al. Wavelength and loss splitting in directly coupled photonic-crystal defect microcavities[J]. Optics Express, 2008, 16(20): 16255-16264.

    [24] Combrié S, Lehoucq G, Junay A, et al. All-optical signal processing at 10 GHz using a photonic crystal molecule[J]. Applied Physics Letters, 2013, 103(19): 193510.

    [25] Bose R, Cai T, Choudhury K R, et al. All-optical coherent control of vacuum Rabi oscillations[J]. Nature Photonics, 2014, 8(11): 858-864.

    [26] Chalcraft A R A, Lam S, Jones B D, et al. Mode structure of coupled L3 photonic crystal cavities[J]. Optics Express, 2011, 19(6): 5670-5675.

    [27] Brossard F S F, Reid B P L, Chan C C S, et al. Confocal microphotoluminescence mapping of coupled and detuned states in photonic molecules[J]. Optics Express, 2013, 21(14): 16934-16945.

    [28] Intonti F, Vignolini S, Türck V, et al. Rewritable photonic circuits[J]. Applied Physics Letters, 2006, 89(21): 211117.

    [29] Vignolini S, Riboli F, Intonti F, et al. Local nanofluidic light sources in silicon photonic crystal microcavities[J]. Physical Review E, 2008, 78(4): 045603.

    [30] Intonti F, Vignolini S, Riboli F, et al. Tuning of photonic crystal cavities by controlled removal of locally infiltrated water[J]. Applied Physics Letters, 2009, 95(17): 173112.

    [31] Lee H S, Kiravittaya S, Kumar S, et al. Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation[J]. Applied Physics Letters, 2009, 95(19): 191109.

    [32] Brunstein M, Karle T J, Sagnes I, et al. Radiation patterns from coupled photonic crystal nanocavities[J]. Applied Physics Letters, 2011, 99(11): 111101.

    [33] Majumdar A, Rundquist A, Bajcsy M, et al. Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule[J]. Physical Review B, 2012, 86(4): 045315.

    [34] Li J, Yu R, Ding C, et al. Optical-frequency-comb generation and entanglement with low-power optical input in a photonic molecule[J]. Physical Review A, 2014, 90(3): 033830.

    [35] Liu S, Yu R, Li J, et al. Creation of quantum entanglement with two separate diamond nitrogen vacancy centers coupled to a photonic molecule[J]. Journal of Applied Physics, 2013, 114(24): 244306.

    [36] Hamel P, Haddadi S, Raineri F, et al. Spontaneous mirror-symmetry breaking in coupled photonic-crystal nanolasers[J]. Nature Photonics, 2015, 9(5): 311-315.

    [37] Uesugi T, Song B S, Asano T, et al. Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab[J]. Optics Express, 2006, 14(1): 377-386.

    [38] Yariv A, Xu Y, Lee R K, et al. Coupled-resonator optical waveguide: a proposal and analysis[J]. Optics Letters, 1999, 24(11): 711-713.

    [39] Yanik M F, Fan S. Stopping light all optically[J]. Physical Review Letters, 2004, 92(8): 083901.

    [40] O′Brien D, Settle M D, Karle T, et al. Coupled photonic crystal heterostructure nanocavities[J]. Optics Express, 2007, 15(3): 1228-1233.

    [41] Dousse A, Suffczyński J, Beveratos A, et al. Ultrabright source of entangled photon pairs[J]. Nature, 2010, 466(7303): 217-220.

    [42] Liew T C H, Savona V. Single photons from coupled quantum modes[J]. Physical Review Letters, 2010, 104(18): 183601.

    [43] Bamba M, Imamolu A, Carusotto I, et al. Origin of strong photon antibunching in weakly nonlinear photonic molecules[J]. Physical Review A, 2011, 83(2): 021802.

    [44] Bamba M, Ciuti C. Counter-polarized single-photon generation from the auxiliary cavity of a weakly nonlinear photonic molecule[J]. Applied Physics Letters, 2011, 99(17): 171111.

    [45] Malhotra T, Ge R C, Dezfouli M K, et al. Quasinormal mode theory and design of on-chip single photon emitters in photonic crystal coupled-cavity waveguides[J]. Optics Express, 2016, 24(12): 13574-13583.

    [46] Schwagmann A, Kalliakos S, Ellis D J P, et al. In-plane single-photon emission from a L3 cavity coupled to a photonic crystal waveguide[J]. Optics Express, 2012, 20(20): 28614-28624.

    [47] Coles R J, Prtljaga N, Royall B, et al. Waveguide-coupled photonic crystal cavity for quantum dot spin readout[J]. Optics Express, 2014, 22(3): 2376-2385.

    [48] Nozaki K, Tanabe T, Shinya A, et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity[J]. Nature Photonics, 2010, 4(7): 477-483.

    [49] Liu C Y. Electro-optical resonant switching in two-dimensional side-coupled waveguide-cavity photonic crystal systems[J]. Physics Letters A, 2011, 375(44): 3895-3898.

    [50] Fang Yuntuan, Hu Jianxia, Xu Qingsong, et al. Magneto-optical storage system based on the coupling of the one-way edge modes and micro cavity modes[J]. Chinese J Lasers, 2015, 42(11): 1106001.

    [51] Descharmes N, Dharanipathy U P, Diao Z, et al. Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity[J]. Physical Review Letters, 2013, 110(12): 123601.

    [52] Waks E, Vuckovic J. Coupled mode theory for photonic crystal cavity-waveguide interaction[J]. Optics Express, 2005, 13(13): 5064-5073.

    [53] Faraon A, Waks E, Englund D, et al. Efficient photonic crystal cavity-waveguide couplers[J]. Applied Physics Letters, 2007, 90(7): 073102.

    [54] Kim G H, Lee Y H, Shinya A, et al. Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode[J]. Optics Express, 2004, 12(26): 6624-6631.

    [55] Hughes S, Ramunno L, Young J F, et al. Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity[J]. Physical Review Letters, 2005, 94(3): 033903.

    [56] Fano U. Effects of configuration interaction on intensities and phase shifts[J]. Physical Review, 1961, 124(6): 1866-1978.

    [57] Ott C, Kaldun A, Raith P, et al. Lorentz meets Fano in spectral line shapes: a universal phase and its laser control[J]. Science, 2013, 340(6133): 716-720.

    [58] Fan S H. Sharp asymmetric line shapes in side-coupled waveguide-cavity systems[J]. Applied Physics Letters, 2002, 80(6): 908-910.

    [59] Zhao Yanhui. Integrating two-dimensional photonic crystal slab cavities with waveguides[D]. Beijing: University of Chinese Academy of Science, 2016.

    [60] Zhao Y, Qian C, Qiu K, et al. Gain enhanced Fano resonance in a coupled photonic crystal cavity-waveguide structure[J]. Scientific Reports, 2016, 6.

    [61] Zhao Y, Qian C, Qiu K, et al. Ultrafast optical switching using photonic molecules in photonic crystal waveguides[J]. Optics Express, 2015, 23(7): 9211-9220.

    [62] Nozaki K, Shinya A, Matsuo S, et al. Ultralow-energy and high-contrast all-optical switch involving fano resonance based on coupled photonic crystal nanocavities[J]. Optics Express, 2013, 21(10): 11877-11888.

    [63] Mingaleev S F, Miroshnichenko A E, Kivshar Y S. Coupled-resonator-induced reflection in photonic-crystal waveguide structures[J]. Optics Express, 2008, 16(15): 11647-11659.

    [64] Min K, Kim J E, Park H Y. Channel drop filters using resonant tunneling processes in two-dimensional triangular lattice photonic crystal slabs[J]. Optics Communications, 2004, 237(1-3): 59-63.

    [65] Fan S, Villeneuve P R, Joannopoulos J D, et al. Channel drop filters in photonic crystals[J]. Optics Express, 1998, 3(1): 4-11.

    [66] Zhou Xingping, Shu Jing, Lu Binjie, et al. Two-wavelength division demultiplexer based on triangular lattice photonic crystal resonant cavity[J]. Acta Optica Sinica, 2012, 33(1): 123001.

    [67] Gao Yongfeng, Zhou Ming, Zhou Jun, et al. Design of power splitter by directional coupling between photonic crystal waveguides[J]. Chinese J Lasers, 2011, 38(5): 0505003.

    [68] Sato Y, Tanaka Y, Upham J, et al. Strong coupling between distant photonic nanocavities and its dynamic control[J]. Nature Photonics, 2012, 6(1): 56-61.

    [69] Englund D, Faraon A, Zhang B, et al. Generation and transfer of single photons on a photonic crystal chip[J]. Optics Express, 2007, 15(9): 5550-5558.

    [70] Santori C, Fattal D, VukoviJ, et al. Indistinguishable photons from a single-photon device[J]. Nature, 2002, 419(6907): 594-597.

    Qian Chenjiang, Xie Xin, Yang Jingnan, Zhao Yanhui, Tang Jing, Xu Xiulai. Coupling of Two-Dimensional Slab Photonic Crystal Micro-Cavities and Waveguides[J]. Laser & Optoelectronics Progress, 2017, 54(3): 30001
    Download Citation