[2] Q XIAO, J TIAN, D LI. Tandem-pumped high-power ytterbium-doped fiber lasers: progress and opportunities. Chinese Journal of Lasers, 48, 1501004(2021).
[3] J ZHOU, B HE, Y QI. High-power fiber laser technology. Chinese Journal of Lasers, 51, 1101021(2024).
[5] M N ZERVAS, C A CODEMARD. High power fiber lasers: a review. IEEE Journal of Selected Topics in Quantum Electronics, 20, 0904123(2014).
[6] W SHI, A SCHULZGEN, R AMEZCUA et al. Fiber lasers and their applications: introduction. Journal of the Optical Society of America B, 34, FLA1(2017).
[9] A KOBYAKOV, M SAUER, D CHOWDHURY. Stimulated Brillouin scattering in optical fibers. Advances in Optics and Photonics, 2, 1-59(2010).
[10] R TAO, X WANG, P ZHOU. Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications. IEEE Journal of Selected Topics in Quantum Electronics, 24, 0903319(2018).
[13] P ZHOU, P MA, S REN. High-power narrow linewidth fiber laser: progress and prospect. Information Countermeasure Technology, 2, 16-36(2023).
[14] A KLENKE, M MÜLLER, H STARK et al. Coherent beam combination of ultrafast fiber lasers. IEEE Journal of Selected Topics in Quantum Electronics, 24, 0902709(2018).
[15] P ZHOU, R SU, Y MA. Review of coherent laser beam combining research progres in the past decade. Chinese Journal of Lasers, 48, 0408003(2021).
[17] R SU, P ZHOU, P ZHANG et al. Review on the progress in coherent beam combining of ultra-short fiber lasers(Invited). Infrared and Laser Engineering, 47, 0103001(2018).
[23] SPRING J B, RUSSELL T H, SHAY T M, et al. Comparison of stimulated Brillouin scattering thresholds spectra in nonpolarizationmaintaining polarizationmaintaining passive fibers [C]Fiber Lasers II: Technology, Systems, Applications, SPIE, 2005, 5709: 147156.
[26] CARTER A, SAMSON B, TANKALA K, et al. The road to kilowatt fiber lasers [C]Optical Components Materials, SPIE, 2004, 5350: 172182.
[27] Shibiao LIAO, Tiao LUO, Runheng XIAO. Preparation of demestic ytterbium-doped polarization-maintaining fiber and study of its laser properties. Chinese Journal of Lasers, 50, 0501002(2023).
[30] Y WANG, Y FENG, X WANG et al. 6.5 GHz linearly polarized kilowatt fiber amplifier based on active polarization control. Applied Optics, 56, 2760-2765(2017).
[32] Y YOU, Y QI, B HE. Principles and development of active polarization control technology for fiber lasers. Laser & Optoelectronics Progress, 25, 100001(2019).
[33] S REN, H CHANG, P MA et al. 3.38 kW all-fiberized narrow linewidth fiber laser based on active polarization control using RMS-Prop algorithm. Optics & Laser Technology, 166, 109634(2023).
[34] CUO C, XIE L, TAO R, et al. A novel coherent beam combining system based on active polarizationphase control [C]AOPC 2023: Laser Technology Applications Optoelectronic Devices Integration, SPIE, 2023, 12959: 1295916.
[35] G D GOODNO, S J MCNAUGHT, J E ROTHENBERG et al. Active phase and polarization locking of a 1.4 kW fiber amplifier. Optics Letters, 35, 1542-1544(2010).
[38] S J MCNAUGHT, P A THIELEN, L N ADAMS et al. Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam. IEEE Journal of Selected Topics in Quantum Electronics, 20, 0901008(2014).
[40] L A SIIMAN, W CHANG, T ZHOU et al. Coherent femtosecond pulse combining of multiple parallel chirped pulse fiber amplifiers. Optics Express, 20, 18097-18116(2012).
[43] H ZHOU, X FENG, L XIE et al. Comprehensive investigation of LOCSET and SPGD algorithms in coherent beam combining applications. Optics & Laser Technology, 181, 111568(2025).