• Infrared and Laser Engineering
  • Vol. 52, Issue 1, 20220462 (2023)
Jun Chen1, Zhongli Xi2, Qiang Qin1, Gongrong Deng1..., Yun Luo1 and Peng Zhao1|Show fewer author(s)
Author Affiliations
  • 1Kunming Institute of Physics, Kunming 650223, China
  • 2School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.3788/IRLA20220462 Cite this Article
    Jun Chen, Zhongli Xi, Qiang Qin, Gongrong Deng, Yun Luo, Peng Zhao. Advance in high operating temperature HgCdTe infrared detector[J]. Infrared and Laser Engineering, 2023, 52(1): 20220462 Copy Citation Text show less
    Thermal image pictures of InAs0.91Sb0.09 focal plane detector developed by KIP in 2019
    Fig. 1. Thermal image pictures of InAs0.91Sb0.09 focal plane detector developed by KIP in 2019
    150 K thermal image pictures of InAs0.91Sb0.09 focal plane detector developed by KIP in 2021
    Fig. 2. 150 K thermal image pictures of InAs0.91Sb0.09 focal plane detector developed by KIP in 2021
    Thermal image pictures of InAs0.83Sb0.17 focal plane detector developed by KIP in 2020
    Fig. 3. Thermal image pictures of InAs0.83Sb0.17 focal plane detector developed by KIP in 2020
    Signal response diagram of p-on-n MWIR HgCdTe focal plane device
    Fig. 4. Signal response diagram of p-on-n MWIR HgCdTe focal plane device
    NETD histogram of p-on-n MWIR HgCdTe focal plane device
    Fig. 5. NETD histogram of p-on-n MWIR HgCdTe focal plane device
    NETD of p-on-n MWIR HgCdTe focal plane device from 80 K to 200 K
    Fig. 6. NETD of p-on-n MWIR HgCdTe focal plane device from 80 K to 200 K
    Blind element distribution of p-on-n MWIR HgCdTe focal plane device from 80 K to 180 K
    Fig. 7. Blind element distribution of p-on-n MWIR HgCdTe focal plane device from 80 K to 180 K
    Dark current of the device operating within 150-200 K
    Fig. 8. Dark current of the device operating within 150-200 K
    Structural diagram of Redlich single moving magnet linear compressor
    Fig. 9. Structural diagram of Redlich single moving magnet linear compressor
    Structure of KIP’s InAsSb HOT IDDCA components
    Fig. 10. Structure of KIP’s InAsSb HOT IDDCA components
    Structure of KIP’s MCT HOT IDDCA components
    Fig. 11. Structure of KIP’s MCT HOT IDDCA components
    ParameterValue
    Focal plane size640×512
    Pixel pitch/μm15
    Operation wavelength/μm3.6-4.2
    Operation temperature of FPA/K150
    Optical axis length/mm71
    Weight/g<290
    Power consumption (@23 ℃, steady)/W<3.5
    NETD/mK25
    F# F/4
    Cooldown time/min2.5
    Cooler typeC351 linear cooler
    MTTF of cooler (Goal)/h>10000
    Table 1. Performance parameter of KIP’s InAsSb HOT IDDCA components
    ParameterValue
    Focal plane size640×512
    Pixel pitch/μm15
    Operation wavelength/μm3.65-4.76
    Operation temperature of FPA/K150
    Optical axis length/mm69.4
    Weight/g259
    NETD/mK15
    F# 4
    Cooler typeC351 linear cooler
    Power consumption (@23 ℃, cooldown)/Wdc13.2
    Power consumption (@23 ℃, steady)/Wdc1.96 (with 50 mW additional heat load); 2.35 (with 100 mW additional heat load)
    Cooldown time (@23 ℃)/s78
    Detector acoustic noise (@1.5 m)/dB25.7 (@ cooler full speed)
    MTTF of cooler (Goal)/h>10000
    Table 2. Typical products parameter test results of engineered MCT HOT 640 detector components
    ManufacturerKunming Institute of PhysicsL3 Harris TechnologiesSelexDRS
    NameMCT HOT 640Onyx Micro SD/HDFIREFLY CAMERA COREZafiro®640 Micro
    Detector picture
    Detector typeMCTMCTMCTMCT
    Focal plane size640×512640×512640×512640×480
    Pixel pitch/μm15151612
    Operation wavelength/μm3.65-4.76MWIR3.7-4.953.4-4.8
    FPA operation temperature/K150160160160
    Optical axis length/mm69.476.29655.88
    Weight/g<260<410<550<410
    Power consumption@23 ℃, steadyCooler<2.5 WdcCore: <9 WCore: <5 WCore: <5 W
    Frame rate/Hz606060120
    NETD15252525
    Operable pixel rate>99.8%>99.4%N/A>99%
    F# F/4 F/4 F/4 F/3.25, F/4
    Cooler typeC351 linearL200 linearSX020 linearMicro cooler
    Cooldown time@23℃Typical<80 s@12 V<6 minTypical<3 minTypical<2.5 min
    MTBF/h>10000 (Goal)>10000>25000>12000
    Table 3. Performance comparison of KIP’s MCT HOT 640 detector components with foreign components of the same type[7-10]
    Jun Chen, Zhongli Xi, Qiang Qin, Gongrong Deng, Yun Luo, Peng Zhao. Advance in high operating temperature HgCdTe infrared detector[J]. Infrared and Laser Engineering, 2023, 52(1): 20220462
    Download Citation