[1] 1王亚霁, 孙玉利, 墨洪磊, 等. 单晶硅透镜铣磨工艺参数优化研究[J]. 航空制造技术, 2021, 64(7): 90-94.WANGY J, SUNY L, MOH L, et al. Study on optimization of grinding process parameters of monocrystalline silicon lens[J]. Aeronautical Manufacturing Technology, 2021, 64(7): 90-94. (in Chinese)
[2] 2王紫光, 康仁科, 周平, 等. 单晶硅反射镜的超精密磨削工艺[J]. 光学 精密工程, 2019, 27(5): 1087-1095. doi: 10.3788/OPE.20192705.1087WANGZ G, KANGR K, ZHOUP, et al. Ultra-precision grinding of monocrystalline silicon reflector[J]. Opt. Precision Eng., 2019, 27(5): 1087-1095. (in Chinese). doi: 10.3788/OPE.20192705.1087
[3] 3刘珂, 李丽娟. 空空导弹与红外导引系统发展评述[J]. 激光与红外, 2016, 46(1): 5-10. doi: 10.3969/j.issn.1001-5078.2016.01.001LIUK, LIL J. Development analysis of air to air missile and infrared guidance[J]. Laser & Infrared, 2016, 46(1): 5-10. (in Chinese). doi: 10.3969/j.issn.1001-5078.2016.01.001
[4] 4宋辞, 田野, 石峰, 等. 单晶硅柱面反射镜离子束倾斜入射加工工艺优化[J]. 光学学报, 2020, 40(12): 167-177. doi: 10.3788/aos202040.1222001SONGC, TIANY, SHIF, et al. Process optimization for cylindrical single-crystal silicon mirror with a tilted incident ion beam figuring[J]. Acta Optica Sinica, 2020, 40(12): 167-177. (in Chinese). doi: 10.3788/aos202040.1222001
[5] 5李明, 吴介立, 吴永前, 等. X射线反射镜研制技术的现状和发展[J]. 光电工程, 2020, 47(8): 62-73.LIM, WUJ L, WUY Q, et al. A review on the f abrication technology of X-ray reflector[J]. Opto-Electronic Engineering, 2020, 47(8): 62-73. (in Chinese)
[6] 6郭兵, 赵清亮, 陈冰, 等. 复杂表面光学元件的超精密磨削加工及其在位砂轮精密修整技术[J]. 航空制造技术, 2019(9): 24-35.GUOB, ZHAOQ L, CHENB, et al. Ultra-precision grinding and on-machine precision truing for optical elements with complex surfaces[J]. Aeronautical Manufacturing Technology, 2019(9): 24-35. (in Chinese)
[7] J Y KE, X CHEN, C L LIU et al. Enhancing the ductile machinability of single-crystal silicon by laser-assisted diamond cutting. The International Journal of Advanced Manufacturing Technology, 118, 3265-3282(2022).
[8] 8王之岳, 陈灶灶, 朱利民, 等. 微透镜阵列单点金刚石车削补偿技术[J]. 光学 精密工程, 2022, 30(7): 813-820. doi: 10.37188/OPE.20223007.0813WANGZH Y, CHENZ Z, ZHUL M, et al. Single point diamond turning and compensation for micro-lens array[J]. Opt. Precision Eng., 2022, 30(7): 813-820. (in Chinese). doi: 10.37188/OPE.20223007.0813
[9] 9王波, 杨彦佶, 王殿龙, 等. X射线聚焦镜的超精密制造[J]. 光学 精密工程, 2021, 29(8): 1839-1846. doi: 10.37188/OPE.20212908.1839WANGB, YANGY J, WANGD L, et al. Ultra-precision manufacture of X-ray focusing mirror[J]. Opt. Precision Eng., 2021, 29(8): 1839-1846. (in Chinese). doi: 10.37188/OPE.20212908.1839
[10] 10张建国, 李江, 黄凯, 等. 高频高精快刀伺服系统优化[J]. 光学 精密工程, 2022, 30(1): 78-88. doi: 10.37188/OPE.20223001.0078ZHANGJ G, LIJ, HUANGK, et al. Optimal design of high frequency and high precision fast tool servo system[J]. Opt. Precision Eng., 2022, 30(1): 78-88. (in Chinese). doi: 10.37188/OPE.20223001.0078
[11] J W YAN, K SYOJI, T KURIYAGAWA et al. Ductile regime turning at large tool feed. Journal of Materials Processing Technology, 121, 363-372(2002).
[12] M MUKAIDA, J W YAN. Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo. International Journal of Machine Tools and Manufacture, 115, 2-14(2017).
[13] J W YAN, K SYOJI, J TAMAKI. Some observations on the wear of diamond tools in ultra-precision cutting of single-crystal silicon. Wear, 255, 1380-1387(2003).
[14] K LIU, H WANG, X Q ZHANG. Ductile Mode Cutting of Brittle Materials(2020).
[15] 15刘冰, 徐宗伟, 李蕊, 等. 单晶硅脆塑转变临界厚度的原位实验[J]. 工程科学学报, 2019, 41(3): 343-349.LIUB, XUZ W, LIR, et al. In-situ experiment on critical thickness of brittle-ductile transition of single-crystal silicon[J]. Chinese Journal of Engineering, 2019, 41(3): 343-349. (in Chinese)
[16] J W YAN, T ASAMI, H HARADA et al. Crystallographic effect on subsurface damage formation in silicon microcutting. CIRP Annals, 61, 131-134(2012).
[17] J G ZHANG, J J ZHANG, T CUI et al. Sculpturing of single crystal silicon microstructures by elliptical vibration cutting. Journal of Manufacturing Processes, 29, 389-398(2017).
[18] H MOHAMMADI, D RAVINDRA, S K KODE et al. Experimental work on micro laser-assisted diamond turning of silicon (111). Journal of Manufacturing Processes, 19, 125-128(2015).
[19] X CHEN, C L LIU, J Y KE et al. Subsurface damage and phase transformation in laser-assisted nanometric cutting of single crystal silicon. Materials & Design, 190, 108524(2020).
[20] N R DHAR. Optimization of surface roughness and cutting temperature in high-pressure coolant-assisted hard turning using Taguchi method. The International Journal of Advanced Manufacturing Technology, 88, 739-753(2017).
[21] M C KONG, W B LEE, C F CHEUNG et al. A study of materials swelling and recovery in single-point diamond turning of ductile materials. Journal of Materials Processing Technology, 180, 210-215(2006).
[22] 22朱蓓蓓, 刘青, 秦琳, 等. 半球谐振子金属化镀膜残余应力的测量方法及影响因素研究[J]. 真空, 2022, 59(2): 55-61.ZHUB B, LIUQ, QINL, et al. Research on residual stress measuring method and influencing factors of metallized coating on hemispherical harmonic oscillator[J]. Vacuum, 2022, 59(2): 55-61. (in Chinese)
[23] 23陈树华, 武华, 周弘毅, 等. 硅片表面粗糙度对界面态的影响[J]. 电子科技, 2013, 26(9): 50-53. doi: 10.3969/j.issn.1007-7820.2013.09.016CHENSH H, WUH, ZHOUH Y, et al. Influence of silicon surface roughness on the interface states[J]. Electronic Science and Technology, 2013, 26(9): 50-53. (in Chinese). doi: 10.3969/j.issn.1007-7820.2013.09.016
[24] J J VILLA. Additional data on the refractive index of silicon. Applied Optics, 11, 2102-2103(1972).