• Photonics Research
  • Vol. 10, Issue 11, 2513 (2022)
Jiading Tian1、2, Zehui Wang3, Qirong Xiao1、2、*, Dan Li1、2, Ping Yan1、2, and Mali Gong1、2
Author Affiliations
  • 1Department of Precision Instrument, Ministry of Education Key Laboratory of Photonic Control Technology, Tsinghua University, Beijing 100084, China
  • 2Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China
  • 3Department of Laser Equipment, Jiangsu Shuguang Photoelectric Co., Ltd., Yangzhou 225009, China
  • show less
    DOI: 10.1364/PRJ.465896 Cite this Article Set citation alerts
    Jiading Tian, Zehui Wang, Qirong Xiao, Dan Li, Ping Yan, Mali Gong. On the initiation of fiber fuse damage in high-power ytterbium-doped fiber lasers[J]. Photonics Research, 2022, 10(11): 2513 Copy Citation Text show less
    References

    [1] Q. R. Xiao, J. D. Tian, Y. S. Huang, X. J. Wang, Z. H. Wang, D. Li, P. Yan, M. L. Gong. Internal features of fiber fuse in a Yb-doped double-clad fiber at 3 kW. Chin. Phys. Lett., 35, 054201(2018).

    [2] R. Li, H. Wu, H. Xiao, J. Leng, P. Zhou. More than 5 kW counter tandem pumped fiber amplifier with near single-mode beam quality. Opt. Laser Technol., 153, 108204(2022).

    [3] S. K. Kalyoncu, B. Mete, A. Yeniay. Diode-pumped triple-clad fiber MOPA with an output power scaling up to 4.67 kW. Opt. Lett., 45, 1870-1873(2020).

    [4] S. Liu, H. Zhan, K. Peng, S. Sun, Y. Li, L. Ni, X. Wang, J. Jiang, J. Yu, R. Zhu, J. Wang, F. Jing, A. Lin. Yb-doped aluminophosphosilicate triple-clad laser fiber with high efficiency and excellent laser stability. IEEE Photon. J., 11, 1501010(2019).

    [5] H. Lin, Y. Feng, Y. Feng, P. Barua, J. K. Sahu, J. Nilsson. 656 W Er-doped, Yb-free large-core fiber laser. Opt. Lett., 43, 3080-3083(2018).

    [6] Y. Chen, T. Yao, H. Xiao, J. Leng, P. Zhou. 3 kW passive-gain-enabled metalized Raman fiber amplifier with brightness enhancement. J. Lightwave Technol., 39, 1785-1790(2021).

    [7] J. M. O. Daniel, N. Simakov, A. Hemming, W. A. Clarkson, J. Haub. Metal clad active fibres for power scaling and thermal management at kW power levels. Opt. Express, 24, 18592-18606(2016).

    [8] Y. Shuto. Simulation of fiber fuse phenomenon in photonic crystal fibers. Opt. Fiber Technol., 61, 102435(2021).

    [9] Y. A. Konin, V. A. Scherbakova, M. I. Bulatov, N. A. Malkov, A. S. Lucenko, S. S. Starikov, N. A. Grachev, A. V. Perminov, A. A. Petrov. Structural characteristics of internal microcavities produced in optical fiber via the fuse effect. J. Opt. Technol., 88, 672-677(2021).

    [10] J. Lee, K. H. Lee, H. Jeong, D. J. Kim, J. H. Lee, M. Jo. A study of the fiber fuse in single-mode 2-kW-class high-power fiber amplifiers. Korean J. Opt. Photonics, 31, 7-12(2020).

    [11] K. Hamatani, K. Kurokawa, S. Nozoe, T. Matsui, K. Tsujikawa, K. Nakajima. Dopant dependence of fiber fuse propagation threshold. 24th Microoptics Conference, 156-157(2019).

    [12] S. Xing, S. Kharitonov, J. Hu, C. S. Bres. Fiber fuse in chalcogenide photonic crystal fibers. Opt. Lett., 43, 1443-1446(2018).

    [13] I. A. Bufetov, A. N. Kolyadin, A. F. Kosolapov, V. P. Efremov, V. E. Foluov. Catastrophic damage in hollow core optical fibers under high power laser radiation. Opt. Express, 27, 18296-18310(2019).

    [14] A. Leal-Junior, A. Frizera, M. J. Pontes, P. Antunes, N. Alberto, M. F. Domingues, H. Lee, R. Ishikawa, Y. Mizuno, K. Nakamura, P. Andre, C. Marques. Dynamic mechanical analysis on fused polymer optical fibers: towards sensor applications. Opt. Lett., 43, 1754-1757(2018).

    [15] T. Matniyaz, F. Kong, M. T. Kalichevsky-Dong, L. Dong. 302 W single-mode power from an Er/Yb fiber MOPA. Opt. Lett., 45, 2910-2913(2020).

    [16] W. Yu, P. Yan, Q. Xiao, T. Qi, D. Li, M. Gong. Power scalability of a continuous-wave high-power Er-Yb co-doped fiber amplifier pumped by Yb-doped fiber lasers. Appl. Opt., 60, 2046-2055(2021).

    [17] A. Q. Huang, R. P. Li, V. Egorov, S. Tchouragoulov, K. Kumar, V. Makarov. Laser-damage attack against optical attenuators in quantum key distribution. Phys. Rev. Appl., 13, 034017(2020).

    [18] D. Tokunaga, S. Sato, H. Hidai, S. Matsusaka, A. Chiba, N. Morita. A novel method of triggering fiber fuse inside glass by optical breakdown and glass drilling as its application. Appl. Phys. A, 125, 400(2019).

    [19] S. Sato, H. Hidai, S. Matsusaka, A. Chiba, N. Morita. Void formation in bulk silica glass by fiber fuse induced with a focused laser beam. Appl. Phys. A, 127, 894(2021).

    [20] Q. R. Xiao, J. D. Tian, D. Li, Y. S. Huang, Z. H. Wang, P. Yan, M. L. Gong. An efficient non-invasive method to fabricate in-fiber microcavities using a continuous-wave laser. IEEE Photon. Technol. Lett., 32, 573-576(2020).

    [21] J. Martins, C. A. R. Diaz, M. F. Domingues, R. A. S. Ferreira, P. Antunes, P. S. Andre. Low-cost and high-performance optical fiber-based sensor for liquid level monitoring. IEEE Sens. J., 19, 4882-4888(2019).

    [22] V. A. Shcherbakova, S. S. Starikov, Y. A. Konin, A. I. Garanin, D. I. Nurmuhametov. Fuse effect investigation in optical fiber for creation optical sensor structure. Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, 914-916(2019).

    [23] N. Alberto, M. F. Domingues, J. H. Belo, C. Marques, P. Antunesa, V. Amaral, P. Andre. Optical fiber fuse effect based sensor for magnetic field monitoring. Proc. SPIE, 11028, 110281S(2019).

    [24] A. Leal-Junior, A. Frizera, H. Lee, Y. Mizuno, K. Nakamura, T. Paixao, C. Leitao, M. F. Domingues, N. Alberto, P. Antunes, P. Andre, C. Marques, M. J. Pontes. Strain, temperature, moisture, and transverse force sensing using fused polymer optical fibers. Opt. Express, 26, 12939-12947(2018).

    [25] A. Leal-Junior, A. Frizera, H. Lee, Y. Mizuno, K. Nakamura, C. Leitao, M. F. Domingues, N. Alberto, P. Antunes, P. Andre, C. Marques, M. J. Pontes. Design and characterization of a curvature sensor using fused polymer optical fibers. Opt. Lett., 43, 2539-2542(2018).

    [26] S. Ishikawa, K. Kurokawa, N. Hanzawa, T. Matsui, K. Nakajima. Suppression of fiber fuse initiation by amplitude modulation of input light. 24th Microoptics Conference, 152-153(2019).

    [27] S. Furuya, K. Kurokawa. Fiber fuse terminator consisting of a step-index multimode fiber spliced with SMFs. IEICE Commun. Express, 9, 400-404(2020).

    [28] Y. Glick, Y. Shamir, M. Aviel, Y. Sintov, S. Goldring, N. Shafir, S. Pearl. 1.2 kW clad pumped Raman all-passive-fiber laser with brightness enhancement. Opt. Lett., 43, 4755-4758(2018).

    [29] Q. Xiao, J. Tian, P. Yan, D. Li, M. Gong. Exploring the initiation of fiber fuse. Sci. Rep., 9, 11655(2019).

    [30] A. M. Rocha, F. Domingues, M. Facão, P. S. André. Threshold power of fiber fuse effect for different types of optical fiber. 13th International Conference on Transparent Optical Networks, 1-3(2011).

    [31] S. Todoroki. Quantitative evaluation of fiber fuse initiation probability in typical single-mode fibers. Optical Fiber Communications Conference and Exhibition (OFC), 1-3(2015).

    [32] S. Todoroki. Quantitative evaluation of fiber fuse initiation with exposure to arc discharge provided by a fusion splicer. Sci. Rep., 6, 25366(2016).

    [33] D. P. Hand, P. St. Russell. Solitary thermal shock waves and optical damage in optical fibers: the fiber fuse. Opt. Lett., 13, 767-769(1988).

    [34] A. N. Tkachev, S. I. Yakovlenko. Calculation of the velocity and threshold of a thermal absorption wave of laser radiation in an optical fibre. Quantum Electron., 34, 761-764(2004).

    [35] R. I. Golyatina, A. N. Tkachev, S. I. Yakovlenko. Calculation of velocity and threshold for a thermal wave of laser radiation absorption in a fiber optic waveguide based on the two-dimensional nonstationary heat conduction equation. Laser Phys., 14, 1429-1433(2004).

    [36] S. I. Yakovlenko. Plasma behind the front of a damage wave and the mechanism of laser-induced production of a chain of caverns in an optical fibre. Quantum Electron., 34, 765-770(2004).

    [37] Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, R. Nagase. Fiber fuse phenomenon in step-index single-mode optical fibers. IEEE J. Quantum Electron., 40, 1113-1121(2004).

    [38] Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, R. Nagase. Evaluation of high-temperature absorption coefficients of optical fibers. IEEE Photon. Technol. Lett., 16, 1008-1010(2004).

    [39] S. I. Yakovlenko. Physical processes upon the optical discharge propagation in optical fiber. Laser Phys., 16, 1273-1290(2006).

    [40] A. Ankiewicz, W. Chen, P. S. Russell, M. Taki, N. Akhmediev. Velocity of heat dissipative solitons in optical fibers. Opt. Lett., 33, 2176-2178(2008).

    [41] A. M. Rocha, M. Facao, A. Martins, P. S. Andre. Simulation of fiber fuse effect propagation. 3rd ICTON Mediterranean Winter Conference, 1-4(2009).

    [42] M. Facao, A. M. Rocha, P. S. D. Andre. Traveling solutions of the fuse effect in optical fibers. J. Lightwave Technol., 29, 109-114(2011).

    [43] D. D. Davis, S. C. Mettler, D. J. DiGiovanni. Experimental data on the fiber fuse. Proc. SPIE, 2714, 202-210(1996).

    [44] P. Varotsos, R. Teisseyre, E. Majewski, M. Lazaridou. Chapter 8. Thermodynamics of point defects. International Geophysics, 231-259(2001).

    [45] P. Ma, H. Xiao, W. Liu, H. Zhang, X. Wang, J. Leng, P. Zhou. All-fiberized and narrow-linewidth 5 kW power-level fiber amplifier based on a bidirectional pumping configuration. High Power Laser Sci. Eng., 9, e45(2021).

    [46] Y. Ye, X. Lin, B. Yang, X. Xi, C. Shi, H. Zhang, X. Wang, J. Li, X. Xu. Tapered Yb-doped fiber enabled a 4 kW near-single-mode monolithic fiber amplifier. Opt. Lett., 47, 2162-2165(2022).

    [47] Y. Wang, R. Kitahara, W. Kiyoyama, Y. Shirakura, T. Kurihara, Y. Nakanishi, T. Yamamoto, M. Nakayama, S. Ikoma, K. Shima. 8-kW single-stage all-fiber Yb-doped fiber laser with a BPP of 0.50 mm-mrad. Proc. SPIE, 11260, 1126022(2020).

    [48] H. Lin, L. Xu, C. Li, Q. Shu, Q. Chu, L. Xie, C. Guo, P. Zhao, Z. Li, J. Wang, F. Jing, X. Tang. 10.6 kW high-brightness cascade-end-pumped monolithic fiber lasers directly pumped by laser diodes in step-index large mode area double cladding fiber. Results Phys., 14, 102479(2019).

    [49] L. Zeng, X. Xi, H. Zhang, B. Yang, P. Wang, X. Wang, X. Xu. Demonstration of the reliability of a 5-kW-level oscillating-amplifying integrated fiber laser. Opt. Lett., 46, 5778-5781(2021).

    [50] J. Chi, P. Li, B. Liang, Y. Yao, H. Hu, G. Zhang, M. Zhang, C. Ma. 100-W 430-ps all-fiber picosecond laser by using 10-/130-μm ytterbium-doped double-clad fiber and its application in SCS. Appl. Phys. B, 118, 369-377(2015).

    [51] P. K. Singh, V. B. Pathak, J. H. Shin, I. W. Choi, K. Nakajima, S. K. Lee, J. H. Sung, H. W. Lee, Y. J. Rhee, C. Aniculaesei, C. M. Kim, K. H. Pae, M. H. Cho, C. Hojbota, S. G. Lee, F. Mollica, V. Malka, C.-M. Ryu, H. T. Kim, C. H. Nam. Electrostatic shock acceleration of ions in near-critical-density plasma driven by a femtosecond petawatt laser. Sci. Rep., 10, 18452(2020).

    [52] M. Murakami, J. J. Honrubia, K. Weichman, A. V. Arefiev, S. V. Bulanov. Generation of megatesla magnetic fields by intense-laser-driven microtube implosions. Sci. Rep., 10, 16653(2020).

    Jiading Tian, Zehui Wang, Qirong Xiao, Dan Li, Ping Yan, Mali Gong. On the initiation of fiber fuse damage in high-power ytterbium-doped fiber lasers[J]. Photonics Research, 2022, 10(11): 2513
    Download Citation