[1] R. W. Boyd. Nonlinear Optics(2008).
[2] J. K. Ranka, R. S. Windeler, A. J. Stentz. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett., 25, 25-27(2000).
[3] P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich. Generation of optical harmonics. Phys. Rev. Lett., 7, 118-119(1961).
[4] R. R. Alfano, S. L. Shapiro. Emission in the region 4000 to 7000 Å via four-photon coupling in glass. Phys. Rev. Lett., 24, 584-587(1970).
[5] W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H.-J. Weigmann, C. D. Thuy. An anomalous frequency broadening in water. Opt. Commun., 4, 413-415(1972).
[6] P. B. Corkum, C. Rolland, T. Srinivasan-Rao. Supercontinuum generation in gases. Phys. Rev. Lett., 57, 2268-2271(1986).
[7] J. Dudley, G. Genty, S. Coen. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys., 78, 1135-1184(2006).
[8] F. Benabid, J. C. Knight, G. Antonopoulos, P. St.J. Russell. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science, 298, 399-402(2002).
[9] F. Benabid, P. J. Roberts. Linear and nonlinear optical properties of hollow core photonic crystal fiber. J. Mod. Opt., 58, 87-124(2011).
[10] F. Belli, A. Abdolvand, W. Chang, J. C. Travers, P. St.J. Russell. Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber. Optica, 2, 292-300(2015).
[11] A. Benoît, B. Beaudou, M. Alharbi, B. Debord, F. Gérôme, F. Salin, F. Benabid. Over-five octaves wide Raman combs in high-power picosecond-laser pumped H2-filled inhibited coupling Kagome fiber. Opt. Express, 23, 14002-14009(2015).
[12] B. Debord, F. Gérôme, C. Honninger, E. Mottay, A. Husakou, F. Benabid, F. Benabid, F. Benabid. Milli-Joule energy-level comb and supercontinuum generation in atmospheric air-filled inhibited coupling Kagome fiber. CLEO: 2015 Postdeadline Paper Digest, JTh5C.4(2015).
[13] D. Strickland, G. Mourou. Compression of amplified chirped optical pulses. Opt. Commun., 55, 447-449(1985).
[14] M. D. Perry, G. Mourou. Terawatt to petawatt subpicosecond lasers. Science, 264, 917-924(1994).
[15] Y. Wang, F. Couny, P. J. Roberts, F. Benabid. Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF. Conference on Lasers and Electro-Optics, CPDB4(2010).
[16] B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, F. Benabid. Hypocycloid-shaped hollow-core photonic crystal fiber Part I: arc curvature effect on confinement loss. Opt. Express, 21, 28597-28608(2013).
[17] T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gerome, F. Benabid. Optical properties of low loss (70 dB/km) hypocycloid-core Kagome hollow core photonic crystal fiber for Rb and Cs based optical applications. J. Lightwave Technol., 31, 2752-2755(2013).
[18] B. Debord, M. Alharbi, A. Benoît, D. Ghosh, M. Dontabactouny, L. Vincetti, J.-M. Blondy, F. Gérôme, F. Benabid. Ultra low-loss hypocycloid-core Kagome hollow-core photonic crystal fiber for green spectral-range applications. Opt. Lett., 39, 6245-6248(2014).
[19] B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, F. Benabid. Ultralow transmission loss in inhibited-coupling guiding hollow fibers. Optica, 4, 209-217(2017).
[20] B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, F. Benabid. Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining. Opt. Express, 22, 10735-10746(2014).
[21] E. T. J. Nibbering, G. Grillon, M. A. Franco, B. Prade, A. Mysyrowicz. Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses. J. Opt. Soc. Am. B, 14, 650-660(1997).
[22] V. Loriot, E. Hertz, O. Faucher, B. Lavorel. Measurement of high order Kerr refractive index of major air components. Opt. Express, 17, 13429-13434(2009).
[23] A. Laubereau, W. Kaiser. Vibrational dynamics of liquids and solids investigated by picosecond light pulses. Rev. Mod. Phys., 50, 607-665(1978).
[24] M. Rokni, A. Flusberg. Stimulated rotational Raman scattering in the atmosphere. IEEE J. Quantum Electron., 22, 1102-1108(1986).
[25] D. R. Miller, R. P. Andres. Rotational relaxation of molecular nitrogen. J. Chem. Phys., 46, 3418-3423(1967).
[26] F. Benabid, G. Antonopoulos, J. C. Knight, P. St.J. Russell. Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber. Phys. Rev. Lett., 95, 213903(2005).
[27] R. J. Heeman, H. P. Godfried. Gain reduction measurements in transient stimulated Raman scattering. IEEE J. Quantum Electron., 31, 358-364(1995).
[28] G. P. Agrawal. Chapter 8—Stimulated Raman scattering. Nonlinear Fiber Optics, 295-352(2013).
[29] G. P. Agrawal. Chapter 10—Four-wave mixing. Nonlinear Fiber Optics, 397-456(2013).
[30] F. Couny, F. Benabid, P. J. Roberts, P. S. Light, M. G. Raymer. Generation and photonic guidance of multi-octave optical-frequency combs. Science, 318, 1118-1121(2007).
[31] S. A. Mousavi, H. C. H. Mulvad, N. Wheeler, P. Horak, T. D. Bradley, S. Alam, J. Hayes, S. R. Sandoghchi, D. Richardson, F. Poletti. Exploring nonlinear pulse propagation, Raman frequency conversion and near octave spanning supercontinuum generation in atmospheric air-filled hollow-core Kagomé fiber. Proc. SPIE, 10088, 100880G(2017).
[32] http://www.fianium.com. http://www.fianium.com
[33] M. Zeisberger, M. A. Schmidt. Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers. Sci. Rep., 7, 11761(2017).