• Laser & Optoelectronics Progress
  • Vol. 57, Issue 11, 111413 (2020)
Yao Fang1、2, Jiale Yong1、2, Jinglan Huo1、2, Qing Yang1、3、**, Yang Cheng1、3, Jie Liang1、2, and Feng Chen1、2、*
Author Affiliations
  • 1State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
  • 2Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronics & Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China;
  • 3School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
  • show less
    DOI: 10.3788/LOP57.111413 Cite this Article Set citation alerts
    Yao Fang, Jiale Yong, Jinglan Huo, Qing Yang, Yang Cheng, Jie Liang, Feng Chen. Bioinspired Slippery Surface Fabricated by Femtosecond Laser and its Applications[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111413 Copy Citation Text show less
    References

    [1] Zorba V, Stratakis E, Barberoglou M et al. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf[J]. Advanced Materials, 20, 4049-4054(2008).

    [2] Zheng Y M, Gao X F, Jiang L. Directional adhesion of superhydrophobic butterfly wings[J]. Soft Matter, 3, 178-182(2007).

    [3] Liu M J, Wang S T, Wei Z X et al. Bioinspired design of a superoleophobic and low adhesive water/solid interface[J]. Advanced Materials, 21, 665-669(2009).

    [4] Parker A R, Lawrence C R. Water capture by a desert beetle[J]. Nature, 414, 33-34(2001).

    [5] Gao X F, Jiang L. Water-repellent legs of water striders[J]. Nature, 432, 36(2004).

    [6] Li X M, Reinhoudt D, Crego-Calama M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces[J]. Chemical Society Reviews, 36, 1350-1368(2007).

    [7] Zhang X, Shi F, Niu J et al. Superhydrophobic surfaces: from structural control to functional application[J]. Journal of Materials Chemistry, 18, 621-633(2008).

    [8] Wen L P, Tian Y, Jiang L. Bioinspired super-wettability from fundamental research to practical applications[J]. Angewandte Chemie International Edition, 54, 3387-3399(2015).

    [9] Nakajima A, Fujishima A, Hashimoto K et al. Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate[J]. Advanced Materials, 11, 1365-1368(1999).

    [10] Zhang L S, Kwok H, Li X C et al. Superhydrophobic substrates from off-the-shelf laboratory filter paper: simplified preparation, patterning, and assay application[J]. ACS Applied Materials & Interfaces, 9, 39728-39735(2017).

    [11] Liu K S, Cao M Y, Fujishima A et al. Bio-inspired titanium dioxide materials with special wettability and their applications[J]. Chemical Reviews, 114, 10044-10094(2014).

    [12] Yang F Y, Zhang H R, Feng H M et al. Bionic SERS chip with super-hydrophobic and plasmonic micro/nano dual structure[J]. Photonics Research, 6, 77(2018). http://www.opticsjournal.net/Articles/Abstract?aid=OJ180202000003hOkRnT

    [13] Jeevahan J, Chandrasekaran M, Britto Joseph G et al. Superhydrophobic surfaces: a review on fundamentals, applications, and challenges[J]. Journal of Coatings Technology and Research, 15, 231-250(2018).

    [14] Simpson J T, Hunter S R, Aytug T. Superhydrophobic materials and coatings: a review[J]. Reports on Progress in Physics, 78, 086501(2015).

    [15] Li J S, Ueda E, Paulssen D et al. Slippery lubricant-infused surfaces: properties and emerging applications[J]. Advanced Functional Materials, 29, 1802317(2019).

    [16] Dong Z Q, Schumann M F, Hokkanen M J et al. Superoleophobicity: superoleophobic slippery lubricant-infused surfaces: combining two extremes in the same surface[J]. Advanced Materials, 30, 1870338(2018).

    [17] Wong T S, Kang S H. Tang S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 477, 443-447(2011).

    [18] Amini S, Kolle S, Petrone L et al. Preventing mussel adhesion using lubricant-infused materials[J]. Science, 357, 668-673(2017).

    [19] Wu Q N, Yang C D, Su C et al. Slippery liquid-attached surface for robust biofouling resistance[J]. ACS Biomaterials Science & Engineering, 6, 358-366(2020).

    [20] Sousa M F B, Loureiro H C, Bertran C A. Anti-scaling performance of slippery liquid-infused porous surface (SLIPS) produced onto electrochemically-textured 1020 carbon steel[J]. Surface and Coatings Technology, 382, 125160(2020).

    [21] Guo T Q, Che P D, Heng L P et al. Slippery surfaces: anisotropic slippery surfaces: electric-driven smart control of a drop's slide[J]. Advanced Materials, 28, 6999-7007(2016).

    [22] Zeng X H, Wu D C, Fu R W. Preparation and characterization of petroleum-pitch-based carbon aerogels[J]. Journal of Applied Polymer Science, 112, 309-314(2009).

    [23] Kim P, Wong T S, Alvarenga J et al. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance[J]. ACS Nano, 6, 6569-6577(2012).

    [24] Xiao R, Miljkovic N, Enright R et al. Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer[J]. Scientific Reports, 3, 1988(2013).

    [25] Huang X Y, Chrisman J D, Zacharia N S. Omniphobic slippery coatings based on lubricant-infused porous polyelectrolyte multilayers[J]. ACS Macro Letters, 2, 826-829(2013).

    [26] Yong J L, Chen F, Yang Q et al. Femtosecond laser controlled wettability of solid surfaces[J]. Soft Matter, 11, 8897-8906(2015).

    [27] Wu D, Wang J N, Wu S Z et al. Three-level biomimetic rice-leaf surfaces with controllable anisotropic sliding[J]. Advanced Functional Materials, 21, 2927-2932(2011).

    [28] Vorobyev A Y, Guo C L. Direct femtosecond laser surface nano/microstructuring and its applications[J]. Laser & Photonics Reviews, 7, 385-407(2013).

    [29] Wang J N, Zhang Y L, Liu Y et al. Recent developments in superhydrophobic graphene and graphene-related materials: from preparation to potential applications[J]. Nanoscale, 7, 7101-7114(2015).

    [30] Yong J L, Chen F, Yang Q et al. A review of femtosecond-laser-induced underwater superoleophobic surfaces[J]. Advanced Materials Interfaces, 5, 1701370(2018).

    [31] Yong J L, Chen F, Yang Q et al. Superoleophobic surfaces[J]. Chemical Society Reviews, 46, 4168-4217(2017).

    [32] Yong J L, Fang Y, Chen F et al. Femtosecond laser ablated durable superhydrophobic PTFE films with micro-through-holes for oil/water separation: separating oil from water and corrosive solutions[J]. Applied Surface Science, 389, 1148-1155(2016).

    [33] Yong J L, Yang Q, Chen F et al. Reversible underwater lossless oil droplet transportation[J]. Advanced Materials Interfaces, 2, 1400388(2015).

    [34] Yong J L, Chen F, Yang Q et al. Photoinduced switchable underwater superoleophobicity-superoleophilicity on laser modified titanium surfaces[J]. Journal of Materials Chemistry A, 3, 10703-10709(2015).

    [35] Yong J L, Chen F, Yang Q et al. Femtosecond laser controlling underwater oil-adhesion of glass surface[J]. Applied Physics A, 119, 837-844(2015).

    [36] Yong J L, Yang Q, Chen F et al. A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces[J]. Journal of Materials Chemistry A, 2, 5499-5507(2014).

    [37] Liu Y Q, Zhang Y L, Fu X Y et al. Bioinspired underwater superoleophobic membrane based on a graphene oxide coated wire mesh for efficient oil/water separation[J]. ACS Applied Materials & Interfaces, 7, 20930-20936(2015).

    [38] Wang J N, Shao R Q, Zhang Y L et al. Biomimetic graphene surfaces with superhydrophobicity and iridescence[J]. Chemistry-an Asian Journal, 7, 301-304(2012).

    [39] Yin K, Chu D K, Dong X R et al. Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil-water separation[J]. Nanoscale, 9, 14229-14235(2017).

    [40] Fang Y, Yong J L, Chen F et al. Durability of the tunable adhesive superhydrophobic PTFE surfaces for harsh environment applications[J]. Applied Physics A, 122, 827(2016).

    [41] Liu Y Q, Jiao Z Z, Zhang Y L et al. Kraft mesh origami for efficient oil-water separation[J]. Langmuir, 35, 815-823(2019).

    [42] Pan R, Zhong M L. Fabrication of superwetting surfaces by ultrafast lasers and mechanical durability of superhydrophobic surfaces[J]. Chinese Science Bulletin, 64, 1268-1289(2019).

    [43] Zhang J Z, Chen F, Yong J L et al. Research progress on bioinspired superhydrophobic surface induced by femtosecond laser[J]. Laser & Optoelectronics Progress, 55, 110001(2018).

    [44] Sugioka K, Cheng Y. Femtosecond laser three-dimensional micro- and nanofabrication[J]. Applied Physics Reviews, 1, 041303(2014).

    [45] Stuart B C, Feit M D, Herman S et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics[J]. Physical Review B, 53, 1749-1761(1996).

    [46] Li Q, Wu Q, Li Y N et al. Femtosecond laser-induced periodic surface structures on lithium niobate crystal benefiting from sample heating[J]. Photonics Research, 6, 789(2018). http://www.opticsjournal.net/Articles/Abstract?aid=OJ180801000009gjPmSo

    [47] von der Linde D, Sokolowski-Tinten K, Bialkowski J. Laser-solid interaction in the femtosecond time regime[J]. Applied Surface Science, 109, 1-10(1997).

    [48] Kawata S, Sun H B, Tanaka T et al. Finer features for functional microdevices[J]. Nature, 412, 697-698(2001).

    [49] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2, 219-225(2008).

    [50] Wen G, Guo Z G, Liu W M. Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications[J]. Nanoscale, 9, 3338-3366(2017).

    [51] Babu D J, Mail M, Barthlott W et al. Superhydrophobic vertically aligned carbon nanotubes for biomimetic air retention under water (salvinia effect)[J]. Advanced Materials Interfaces, 4, 1700273(2017).

    [52] Yoo J H, Kwon H J, Paeng D et al. Facile fabrication of a superhydrophobic cage by laser direct writing for site-specific colloidal self-assembled photonic crystal[J]. Nanotechnology, 27, 145604(2016).

    [53] Xu Z G, Zhao Y, Wang H X et al. Fluorine-free superhydrophobic coatings with pH-induced wettability transition for controllable oil-water separation[J]. ACS Applied Materials & Interfaces, 8, 5661-5667(2016).

    [54] Xue C H, Li Y R, Hou J L et al. Self-roughened superhydrophobic coatings for continuous oil-water separation[J]. Journal of Materials Chemistry A, 3, 10248-10253(2015).

    [55] Li J, Long Y F, Xu C C et al. Continuous, high-flux and efficient oil/water separation assisted by an integrated system with opposite wettability[J]. Applied Surface Science, 433, 374-380(2018).

    [56] Chen F, Zhang D S, Yang Q et al. Anisotropic wetting on microstrips surface fabricated by femtosecond laser[J]. Langmuir, 27, 359-365(2011). http://pubs.acs.org/doi/pdf/10.1021/la103293j

    [57] Baldacchini T, Carey J E, Zhou M et al. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser[J]. Langmuir, 22, 4917-4919(2006).

    [58] Zhang D S, Chen F, Yang Q et al. Mutual wetting transition between isotropic and anisotropic on directional structures fabricated by femotosecond laser[J]. Soft Matter, 7, 8337(2011).

    [59] Yong J L, Yang Q, Chen F et al. Stable superhydrophobic surface with hierarchical mesh-porous structure fabricated by a femtosecond laser[J]. Applied Physics A, 111, 243-249(2013).

    [60] Vorobyev A Y, Guo C L. Multifunctional surfaces produced by femtosecond laser pulses[J]. Journal of Applied Physics, 117, 033103(2015).

    [61] Yong J L, Chen F, Yang Q et al. Femtosecond laser weaving superhydrophobic patterned PDMS surfaces with tunable adhesion[J]. The Journal of Physical Chemistry C, 117, 24907-24912(2013).

    [62] Yong J L, Chen F, Yang Q et al. Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays[J]. Langmuir, 29, 3274-3279(2013).

    [63] Lu Y, Yu L D, Zhang Z et al. Biomimetic surfaces with anisotropic sliding wetting by energy-modulation femtosecond laser irradiation for enhanced water collection[J]. RSC Advances, 7, 11170-11179(2017).

    [64] Fang Y, Yong J L, Chen F et al. Anisotropic superhydrophobicity: bioinspired fabrication of Bi/tridirectionally anisotropic sliding superhydrophobic PDMS surfaces by femtosecond laser[J]. Advanced Materials Interfaces, 5, 1870024(2018).

    [65] Yong J L, Chen F, Yang Q et al. Femtosecond laser induced hierarchical ZnO superhydrophobic surfaces with switchable wettability[J]. Chemical Communications, 51, 9813-9816(2015).

    [66] Zhang J Z, Yong J L, Yang Q et al. Femtosecond laser-induced underwater superoleophobic surfaces with reversible pH-responsive wettability[J]. Langmuir, 35, 3295-3301(2019).

    [67] Bai X, Yang Q, Fang Y et al. Superhydrophobicity-memory surfaces prepared by a femtosecond laser[J]. Chemical Engineering Journal, 383, 123143(2020).

    [68] Yong J L, Chen F, Yang Q et al. Bioinspired underwater superoleophobic surface with ultralow oil-adhesion achieved by femtosecond laser microfabrication[J]. Journal of Materials Chemistry A, 2, 8790-8795(2014).

    [69] Yong J L, Chen F, Yang Q et al. Bioinspired transparent underwater superoleophobic and anti-oil surfaces[J]. Journal of Materials Chemistry A, 3, 9379-9384(2015).

    [70] Huo J L, Yang Q, Chen F et al. Underwater transparent miniature “mechanical hand” based on femtosecond laser-induced controllable oil-adhesive patterned glass for oil droplet manipulation[J]. Langmuir, 33, 3659-3665(2017).

    [71] Yong J L, Chen F, Yang Q et al. Controllable underwater anisotropic oil-wetting[J]. Applied Physics Letters, 105, 071608(2014).

    [72] Cheng Y, Yang Q, Fang Y et al. Underwater superoleophobic tracks: underwater anisotropic 3D superoleophobic tracks applied for the directional movement of oil droplets and the microdroplets reaction[J]. Advanced Materials Interfaces, 6, 1970066(2019).

    [73] Li G Q, Zhang Z, Wu P C et al. One-step facile fabrication of controllable microcone and micromolar silicon arrays with tunable wettability by liquid-assisted femtosecond laser irradiation[J]. RSC Advances, 6, 37463-37471(2016).

    [74] Yong J L, Chen F, Li M J et al. Remarkably simple achievement of superhydrophobicity, superhydrophilicity, underwater superoleophobicity, underwater superoleophilicity, underwater superaerophobicity, and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces[J]. Journal of Materials Chemistry A, 5, 25249-25257(2017).

    [75] Tuteja A, Choi W, Ma M et al. Designing superoleophobic surfaces[J]. Science, 318, 1618-1622(2007).

    [76] Pendurthi A, Movafaghi S, Wang W et al. Fabrication of nanostructured omniphobic and superomniphobic surfaces with inexpensive CO2 laser engraver[J]. ACS Applied Materials & Interfaces, 9, 25656-25661(2017).

    [77] Liu T, Kim C J. Turning a surface superrepellent even to completely wetting liquids[J]. Science, 346, 1096-1100(2014).

    [78] Tuteja A, Choi W, Mabry J M et al. Robust omniphobic surfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 105, 18200-18205(2008).

    [79] Chen H W, Zhang P F, Zhang L W et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature, 532, 85-89(2016).

    [80] Yu C M, Zhu X B, Li K et al. Manipulating bubbles in aqueous environment via a lubricant-infused slippery surface[J]. Advanced Functional Materials, 27, 1701605(2017).

    [81] Irajizad P, Ray S, Farokhnia N et al. Remote droplet manipulation on self-healing thermally activated magnetic slippery surfaces[J]. Advanced Materials Interfaces, 4, 1700009(2017).

    [82] Yong J L, Huo J L, Yang Q et al. Porous network microstructures: femtosecond laser direct writing of porous network microstructures for fabricating super-slippery surfaces with excellent liquid repellence and anti-cell proliferation[J]. Advanced Materials Interfaces, 5, 1870029(2018).

    [83] Yong J L, Chen F, Yang Q et al. Liquid repellence: nepenthes inspired design of self-repairing omniphobic slippery liquid infused porous surface (SLIPS) by femtosecond laser direct writing[J]. Advanced Materials Interfaces, 4, 1700552(2017).

    [84] Jiao Y L, Lv X, Zhang Y Y et al. Pitcher plant-bioinspired bubble slippery surface fabricated by femtosecond laser for buoyancy-driven bubble self-transport and efficient gas capture[J]. Nanoscale, 11, 1370-1378(2019).

    [85] Lv X, Jiao Y L, Wu S Z et al. Anisotropic sliding of underwater bubbles on microgrooved slippery surfaces by one-step femtosecond laser scanning[J]. ACS Applied Materials & Interfaces, 11, 20574-20580(2019).

    [86] Wang P, Lu Z, Zhang D. Slippery liquid-infused porous surfaces fabricated on aluminum as a barrierto corrosion induced by sulfate reducing bacteria[J]. Corrosion Science, 93, 159-166(2015).

    [87] Manna U, Raman N, Welsh M A et al. Slippery liquid-infused porous surfaces that prevent microbial surface fouling and kill non-adherent pathogens in surrounding media: a controlled release approach[J]. Advanced Functional Materials, 26, 3599-3611(2016).

    [88] Luo J, Geraldi N, Guan J et al. Slippery liquid-infused porous surfaces and droplet transportation by surface acoustic waves[J]. Physical Review Applied, 7, 014017(2017).

    [89] Zhou X, Lee Y Y. Chong K S L, et al. Superhydrophobic and slippery liquid-infused porous surfaces formed by the self-assembly of a hybrid ABC triblock copolymer and their antifouling performance[J]. Journal of Materials Chemistry B, 6, 440-448(2018).

    [90] Juuti P, Haapanen J, Stenroos C et al. Achieving a slippery, liquid-infused porous surface with anti-icing properties by direct deposition of flame synthesized aerosol nanoparticles on a thermally fragile substrate[J]. Applied Physics Letters, 110, 161603(2017).

    [91] Xiao L L, Li J S, Mieszkin S et al. Slippery liquid-infused porous surfaces showing marine antibiofouling properties[J]. ACS Applied Materials & Interfaces, 5, 10074-10080(2013).

    [92] Epstein A K, Wong T S, Belisle R A et al. Liquid-infused structured surfaces with exceptional anti-biofouling performance[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 13182-13187(2012).

    [93] Li J S, Kleintschek T, Rieder A et al. Hydrophobic liquid-infused porous polymer surfaces for antibacterial applications[J]. ACS Applied Materials & Interfaces, 5, 6704-6711(2013).

    [94] Zouaghi S, Six T, Bellayer S et al. Antifouling biomimetic liquid-infused stainless steel: application to dairy industrial processing[J]. ACS Applied Materials & Interfaces, 9, 26565-26573(2017).

    [95] Subramanyam S B, Rykaczewski K, Varanasi K K. Ice adhesion on lubricant-impregnated textured surfaces[J]. Langmuir, 29, 13414-13418(2013).

    [96] Wilson P W, Lu W Z, Xu H J et al. Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS)[J]. Physical Chemistry Chemical Physics, 15, 581-585(2013).

    [97] Manna U, Lynn D M. Fabrication of liquid-infused surfaces using reactive polymer multilayers: principles for manipulating the behaviors and mobilities of aqueous fluids on slippery liquid interfaces[J]. Advanced Materials, 27, 3007-3012(2015).

    [98] Wu S Z, Zhou L L, Chen C et al. Photothermal actuation of diverse liquids on an Fe3O4-doped slippery surface for electric switching and cell culture[J]. Langmuir, 35, 13915-13922(2019).

    Yao Fang, Jiale Yong, Jinglan Huo, Qing Yang, Yang Cheng, Jie Liang, Feng Chen. Bioinspired Slippery Surface Fabricated by Femtosecond Laser and its Applications[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111413
    Download Citation