• Chinese Journal of Quantum Electronics
  • Vol. 38, Issue 4, 485 (2021)
Yuteng FAN1、*, Lei SUO1, Chunhui ZHANG1、2, Jiaming CHEN1、2, and Qin WANG1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2021.04.011 Cite this Article
    FAN Yuteng, SUO Lei, ZHANG Chunhui, CHEN Jiaming, WANG Qin. Passive decoy-state quantum digital signature scheme based on linear optical components[J]. Chinese Journal of Quantum Electronics, 2021, 38(4): 485 Copy Citation Text show less
    References

    [1] Rivest R L, Shamir A, Adleman L. A method for obtaining digital signatures and public-key cryptosystems[J]. Communications of the ACM, 1978, 21(2): 120-126.

    [2] Gottesman D, Chuang I. Quantum digital signatures[J]. 2002, arXiv: 0105032v2[quant-ph].

    [3] Wootters W K, Zurek W H. A single quantum cannot be cloned[J]. Nature, 1982, 299(5886): 802-803.

    [4] Busch P, Heinonen T, Lahti P. Heisenberg’s uncertainty principle[J]. Physics Reports, 2007, 452(6): 155-176.

    [5] Andersson E, Curty M, Jex I. Experimentally realizable quantum comparison of coherent states and its applications[J]. Physical Review A, 2006, 74(2): 022304.

    [6] Clarke P J, Collins R J, Dunjko V, et al. Experiment demonstration of quantum digital signatures using phase-encoded coherent states of light[J]. Nature Communications, 2012, 3(1): 1-8.

    [7] Collins R J, Donaldson R J, Dunjko V, et al. Realization of quantum digital signatures without the requirement of quantum memory[J]. Physical Review Letters, 2014, 113(4): 040502.

    [8] Donaldson R J, Collins R J, Kleczkowska K, et al. Experimental demonstration of kilometer-range quantum digital signatures[J]. Physical Review A, 2016, 93(1): 012329.

    [9] Amiri R, Wallden P, Kent A, et al. Secure quantum signatures using insecure quantum channels[J]. Physical Review A, 2016, 93(3): 032325.

    [10] Yin H L, Fu Y, Chen Z B. Practical quantum digital signature[J]. Physical Review A, 2016, 93(3): 032316.

    [11] Roberts G L, Lucamarini M, Yuan Z L, et al. Experimental measurement-device-independent quantum digital signatures[J]. Nature Communications, 2017, 8(1): 1098.

    [12] Zhang C, Zhou X, Ding H, et al. Proof-of-principle demonstration of passive decoy-state quantum digital signatures over 200 km[J]. Physical Review Applied, 2018, 10(3): 034033.

    [13] An X B, Zhang H, Zhang C M, et al. Practical quantum digital signature with a gigahertz BB84 quantum key distribution system[J]. Optics Letters, 2019, 44(5): 139-142.

    [14] Wang S, Chen W, Yin Z, et al. Practical gigahertz quantum key distribution robust against channel disturbance[J]. Optics Letters, 2018, 43(9): 2030-2033.

    [15] Chen J M. Theoretical Research on Quantum Digital Signature[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019.

    [16] Ding H J, Chen J J, Ji L, et al. 280 km experimental demonstration of a quantum digital signature with one decoy state[J]. Optics Letters, 2020, 45(7): 1711-1714.

    [17] Hwang W Y. Quantum key distribution with high loss: Toward global secure communication[J]. Physical Review Letters, 2003, 91(5): 057901.

    [18] Wang X B. Beating the photon-number-splitting attack in practical quantum cryptography[J]. Physical Review Letters, 2005, 94(23): 230503.

    [19] Lo H K, Ma X F, Chen K. Decoy state quantum key distribution[J]. Physical Review Letters, 2005, 94(23): 230504.

    [20] Curty M, Moroder T, Ma X F, et al. Non-Poissonian statistics from Poissonian light sources with application to passive decoy state quantum key distribution[J]. Optics Letters, 2009, 34(20): 3238-3240.

    [21] Curty M, Ma X F, Qi B. Passive decoy-state quantum key distribution with practical light sources[J]. Physical Review A, 2010, 81(2): 022310.

    [22] Lim C C W, Curty M, Walenta N, et al. Concise security bounds for practical decoy-state quantum key distribution[J]. Physical Review A, 2014, 89(2): 022307.

    [23] Wang X B, Peng C Z, Zhang J, et al. General theory of decoy-state quantum cryptography with source errors[J]. Physical Review A, 2008, 77(4): 042311.

    [24] Serfling R J. Probability inequalities for the sum in sampling without replacement[J]. The Annals of Statistics, 1974, 2(1): 39-48.

    [25] Gobby C, Yuan Z L, Shields A J. Quantum key distribution over 122 km of standard telecom fiber[J]. Applied Physics Letters, 2004, 84(19): 3762-3764.

    [26] Zhang W J, You L X, Li H, et al. NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature[J]. Science China Physics, Mechanics & Astronomy, 2017, 60(12): 120314.

    [27] Xu F H, Xu H, Lo H K, et al. Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution[J]. Physical Review A, 2014, 89(5): 052333.

    FAN Yuteng, SUO Lei, ZHANG Chunhui, CHEN Jiaming, WANG Qin. Passive decoy-state quantum digital signature scheme based on linear optical components[J]. Chinese Journal of Quantum Electronics, 2021, 38(4): 485
    Download Citation