• Acta Optica Sinica
  • Vol. 40, Issue 9, 0930002 (2020)
Qiang Zhang1、2, Pinhua Xie1、2、3、*, Jin Xu2、**, Ang Li2, Zhaokun Hu2, Xin Tian2, Yeyuan Huang2, and Wenqing Liu1、2
Author Affiliations
  • 1School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
  • 2Key Laboratory of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China;
  • 3Innovation Excellence Center of Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
  • show less
    DOI: 10.3788/AOS202040.0930002 Cite this Article Set citation alerts
    Qiang Zhang, Pinhua Xie, Jin Xu, Ang Li, Zhaokun Hu, Xin Tian, Yeyuan Huang, Wenqing Liu. Two-Dimensional Fast Imaging of Smoke Plumes Based on Spectral Telemetry[J]. Acta Optica Sinica, 2020, 40(9): 0930002 Copy Citation Text show less
    References

    [1] General S, Bobrowski N, Pöhler D et al. Airborne I-DOAS measurements at Mt. etna: BrO and OClO evolution in the plume[J]. Journal of Volcanology and Geothermal Research, 300, 175-186(2015).

    [2] Meier A C, Schönhardt A, Bösch T et al. High-resolution airborne imaging DOAS measurements of NO2 above Bucharest during AROMAT[J]. Atmospheric Measurement Techniques, 10, 1831-1857(2017).

    [3] Lee H, Irie H, Ryu J et al. Lower tropospheric aerosol measurements by MAX-DOAS during severe Asian dust period[J]. Aerosol Science and Technology, 43, 1208-1217(2009).

    [4] Pikelnaya O, Flynn J H, Tsai C et al. Imaging DOAS detection of primary formaldehyde and sulfur dioxide emissions from petrochemical flares[J]. Journal of Geophysical Research: Atmospheres, 118, 8716-8728(2013).

    [5] Liu J, Si F Q, Zhou H J et al. Observation of two-dimensional distributions of NO2 with airborne imaging DOAS technology[J]. Acta Physica Sinica, 64, 034217(2015).

    [6] Wang R W, Xie P H, Xu J et al. Retrieve of water vapor column density in atmosphere based on near infrared differential optical absorption spectroscopy[J]. Acta Optica Sinica, 39, 0201001(2019).

    [7] Cheng Y L, Wang S S, Zhu J et al. Surveillance of SO2 and NO2 from ship emissions by MAX-DOAS measurements and the implications regarding fuel sulfur content compliance[J]. Atmospheric Chemistry and Physics, 19, 13611-13626(2019).

    [8] Lohberger F, Hönninger G, Platt U. Ground-based imaging differential optical absorption spectroscopy of atmospheric gases[J]. Applied Optics, 43, 4711-4717(2004).

    [9] Lee H, Kim Y J, Lee C. Estimation of the rate of increase in nitrogen dioxide concentrations from power plant stacks using an imaging-DOAS[J]. Environmental Monitoring and Assessment, 152, 61-70(2009).

    [10] Platt U, Lübcke P, Kuhn J et al. Quantitative imaging of volcanic plumes: results, needs, and future trends[J]. Journal of Volcanology and Geothermal Research, 300, 7-21(2015).

    [11] Mons V, Wang Q, Zaki T A. Kriging-enhanced ensemble variational data assimilation for scalar-source identification in turbulent environments[J]. Journal of Computational Physics, 398, 108856(2019).

    [12] van Zoest V, Osei F B, Hoek G et al. Spatio-temporal regression kriging for modelling urban NO2 concentrations[J]. International Journal of Geographical Information Science, 1-15(2019).

    [13] Sharan M, Gopalakrishnan S G. Mathematical modeling of diffusion and transport of pollutants in the atmospheric boundary layer[J]. Pure and Applied Geophysics, 160, 357-394(2003).

    [14] Sánchez-Sosa J E, Castillo-Mixcóatl J, Beltrán-Pérez G et al. An application of the Gaussian plume model to localization of an indoor gas source with a mobile robot[J]. Sensors, 18, 4375(2018).

    [15] Rakesh P T, Venkatesan R, Srinivas C V et al. Performance evaluation of modified Gaussian and Lagrangian models under low wind speed: a case study[J]. Annals of Nuclear Energy, 133, 562-567(2019).

    [16] Wu Z Q, Liu C H. Parameterisation study of chemically reactive pollutant dispersion over idealised urban areas based on the Gaussian plume model[J]. International Journal of Environment and Pollution, 65, 84-102(2019).

    [17] Jeong H, Kim E, Park M et al. Numerical simulation of air pollutant dispersion using an in situ tracer experiment at a nuclear site[J]. Annals of Nuclear Energy, 73, 1-6(2014).

    [18] Shah A, Allen G, Pitt J R et al. A near-field Gaussian plume inversion flux quantification method, applied to unmanned aerial vehicle sampling[J]. Atmosphere, 10, 396(2019).

    [19] Wang Y, Dörner S, Donner S et al. Vertical profiles of NO2, SO2, HONO, HCHO, CHOCHO and aerosols derived from MAX-DOAS measurements at a rural site in the central western North China Plain and their relation to emission sources and effects of regional transport[J]. Atmospheric Chemistry and Physics, 19, 5417-5449(2019).

    [20] Tan W, Liu C, Wang S S et al. Tropospheric NO2, SO2, and HCHO over the East China Sea, using ship-based MAX-DOAS observations and comparison with OMI and OMPS satellite data[J]. Atmospheric Chemistry and Physics, 18, 15387-15402(2018).

    [21] Tian X, Xie P H, Xu J et al. Long-term observations of tropospheric NO2, SO2 and HCHO by MAX-DOAS in Yangtze River Delta area, China[J]. Journal of Environmental Sciences, 71, 207-221(2018).

    [22] Brinksma E J, Pinardi G, Volten H et al. and 2006 Dandelions NO2 and aerosol intercomparison campaigns[J]. Journal of Geophysical Research Atmospheres, 2008, 113(D16): D16S46.(2005).

    [23] Li A, Xie P H, Liu W Q et al. Studies on the determination of the flux of gaseous pollutant from an area by passive differential optical absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 29, 28-32(2009).

    [24] Balzani Lööv J M, Alfoldy B, Gast L F L et al. Field test of available methods to measure remotely SOx and NOx emissions from ships[J]. Atmospheric Measurement Techniques, 7, 2597-2613(2014).

    [25] Berg N, Mellqvist J, Jalkanen J P et al. Ship emissions of SO2 and NO2: DOAS measurements from airborne platforms[J]. Atmospheric Measurement Techniques, 5, 1085-1098(2012).

    [26] Hong Q Q, Liu C, Chan K L et al. Ship-based MAX-DOAS measurements of tropospheric NO2, SO2, and HCHO distribution along the Yangtze River[J]. Atmospheric Chemistry and Physics, 18, 5931-5951(2018).

    [27] Wu F C, Xie P H, Li A et al. Investigations of temporal and spatial distribution of precursors SO2 and NO2 vertical columns in the North China Plain using mobile DOAS[J]. Atmospheric Chemistry and Physics, 18, 1535-1554(2018).

    [28] Bucsela E J, Krotkov N A, Celarier E A et al. A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments: applications to OMI[J]. Atmospheric Measurement Techniques, 6, 2607-2626(2013).

    [29] Hendrick F, Müller J F, Clémer K et al. Four years of ground-based MAX-DOAS observations of HONO and NO2 in the Beijing area[J]. Atmospheric Chemistry and Physics, 14, 765-781(2014).

    Qiang Zhang, Pinhua Xie, Jin Xu, Ang Li, Zhaokun Hu, Xin Tian, Yeyuan Huang, Wenqing Liu. Two-Dimensional Fast Imaging of Smoke Plumes Based on Spectral Telemetry[J]. Acta Optica Sinica, 2020, 40(9): 0930002
    Download Citation