• Infrared and Laser Engineering
  • Vol. 46, Issue 8, 806003 (2017)
Li Jingzhao1、2、*, Chen Zhenqiang2, Zhu Siqi2, Li Anming2, Li Zhen2, and Yin Hao2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla201746.0806003 Cite this Article
    Li Jingzhao, Chen Zhenqiang, Zhu Siqi, Li Anming, Li Zhen, Yin Hao. Theoretical research of the dual-wavelength oscillating condition in Nd-doped laser crystals[J]. Infrared and Laser Engineering, 2017, 46(8): 806003 Copy Citation Text show less
    References

    [1] Akulin V M, Alimpiev S S, Karlov N V, et al. Appreciable increase of the dissociation rate of polyatomic molecules in the re shift of the nonresonant frequency under conditions of two-frequency laser action [J]. JETP Letters, 1977, 25(9): 400-403.

    [2] Shen Hongyuan. Dual wavelenglh crystal lasers [J]. Chinese Journal of Lasers, 1994, 21(5): 334-340. (in Chinese)

    [3] Lin Yanfeng, Zhang Ge, Zhu Haiyong, et al. Mechanism of dual-wavelength oscillation in Nd:YAG Q-switched laser [J]. Acta Physica Sinica, 2009, 58(6): 3909-3914. (in Chinese)

    [4] Shen H Y, Lin W X, Zeng R R, et al. Twice sum-frequency mixing of a dual-wavelength Nd:YAlO3 laser to get 413.7 nm violet coherent radiation in LilO3 crystal [J]. Journal of Applied Physics, 1991, 70(3): 1880-1881.

    [5] Shen H Y, Lin W X, Zeng R R, et al. Second-harmonic generation and sum-frequency mixing of double-wavelength Nd:YAlO3 laser to 413.71 nm violet coherent radiation in LilO3 crystal[J]. Journal of Applied Physics, 1992, 72(9): 4472-4473.

    [6] Weigl F. A generalized technique of two-wavelength, nondiffuse holographic interferometry[J]. Applied Optics, 1971, 10(1): 187-192.

    [7] Wang Jiaxian. Cavity design and its parameters choice for a dual-wavelength Nd:YAG/Cr4+:YAG laser[J]. Laser Journal, 2002, 23(5): 14-15. (in Chinese)

    [8] Wan Yong, Han Kai, Han Hong, et al. Repetitive, Raman shifted, (Nd, Ce):YAG laser with twin-wavelength outputs [J]. Laser Technology, 2002, 26(2): 126-128. (in Chinese)

    [9] Yan Ying, Luo Yu, Pan Qing, et al. Watt level CW frequency-stabilized Nd:YAP/KTP laser with dual wavelength outputs [J]. Chinese Journal of Lasers, 2004, 31(5): 513-517. (in Chinese)

    [10] Wang Jiaxian, Lv Fengping, Su Feiya. Investigation on a compound resonator Nd:YAG-Cr4+:YAGlaser [J]. Chinese Journal of Lasesrs, 2004, 31(4): 399-402. (in Chinese)

    [11] Wei Yong, Zhang Ge, Huang Chenghui, et al. A 1 318.8 nm/

         1 338 nm simultaneous dual wavelength Nd:YAG laser [J]. Laser and Infrared, 2005, 35(3): 164-166. (in Chinese)

    [12] Zhang L, Wei Z, Feng B, et al. Simultaneous dual-wavelength Q-switched Nd:YAG laser operating at 1.06 μm and 946 nm [J]. Optics Communications, 2006, 264(1): 51-54.

    [13] Zhu H Y, Zhang G, Huang C H, et al. 1 318.8 nm/1 338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser [J]. Applied Physics B, 2008, 90(3): 451-454.

    [14] Su H, Shen H Y, Lin W X, et al. Computational model of Q-switch Nd:YAlO3 dual-wavelength laser [J]. Journal of Applied Physics, 1998, 84(12): 6519-6522.

    [15] Lin Wenxiong, Shen Hongyuan. A new configuration of the laser cavity for simultaneous dual wavelength Q-switch pulsed Nd:YAlO3 laser [J]. Acta Physica Sinica, 1999, 48(4): 667-672. (in Chinese)

    [16] Lin Y Y, Chen S Y, Chiang A C, et al. Single-longitudinal-mode, tunable dual-wavelength, CW Nd:YVO4 laser [J]. Optics Express, 2006, 14(12): 5329-5334.

    [17] Chai Hongliang, Xue Lin, Huang Haitao, et al. Diode-pumped Nd:GdVO4 laser emitting at four wavelengths [J]. Laser and Infrared, 2007, 37(2): 120-123. (in Chinese)

    [18] Saito N, Akagawa K, Wada S, et al. Dual wavelength oscillation by electronic tuning of a Ti:sapphire laser for difference-frequency generation [C]//Conference on Lasers and Electro-Optics. Washington: Optical Society of America, 1998: 68-69.

    [19] Shen Hongyuan. Oscillation condition of simultaneous multiple wavelength lasing[J]. Chinese Physics Letters, 1990, 7(4): 174-176.

    [20] Shen H Y, Su H. Operating conditions of continuous wave simultaneous dual wavelength laser in neodymium host crystals[J]. Journal of Applied Physics, 1999, 86(12): 6647-6651.

    [21] Barnes N P, Gettemy D J, Esterowitz L, et al. Comparison of Nd 1.06 and 1.33 μm operation in various hosts [J]. IEEE Journal of Quantum Electronics, 1987, 23(9): 1434-1451.

    [22] Weber M J, Bass M, Andringa K, et al. Czochralski growth and properties of YAlO3 laser crystals[J]. Applied Physics Letters, 1969, 15(10): 342-345.

    [23] Shen Hongyuan, Lian Tianguan, Zheng Ruirong, et al. Measurement of the stimulated-emission cross-section for the 4F3/2-4I13/2 transition of Nd3+ in YAlO3 crystal[J]. IEEE Journal of Quantum Electronics, 1989, 25(2): 144-146.

    [24] Tucker A W, Birnbaum M, Fincher C L, et al. Stimulated-emission cross section at 1 064 and 1 342 nm in Nd:YVO4 [J]. Journal of Applied Physics, 1977, 48(12): 4907-4911.

    [25] Singh S, Smith R G, Uitert L G V. Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature[J]. Physical Review B, 1974, 10(6): 2566-2572.

    Li Jingzhao, Chen Zhenqiang, Zhu Siqi, Li Anming, Li Zhen, Yin Hao. Theoretical research of the dual-wavelength oscillating condition in Nd-doped laser crystals[J]. Infrared and Laser Engineering, 2017, 46(8): 806003
    Download Citation