• Journal of Infrared and Millimeter Waves
  • Vol. 37, Issue 6, 761 (2018)
WU Li-Heng and WANG Ming-Hong*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2018.06.021 Cite this Article
    WU Li-Heng, WANG Ming-Hong. Study on the filter based on photonic crystal 1×3 cavity[J]. Journal of Infrared and Millimeter Waves, 2018, 37(6): 761 Copy Citation Text show less
    References

    [1] Kanazawa S, Fujisawa T, Nunoya N, et al. Ultra-compact 100 GbE transmitter optical sbassembly for 40-km SMF transmission [J]. Journal of Lightwave Technology, 2013, 31(4):602-608.

    [2] Ohyama T, Ohki A, Takahata K, et al. Transmitter optical subassembly using a polarization beam combiner for 100 Gbit/s ethernet over 40-km transmission [J]. Lightwave Technol, 2015, 33(10): 1985-1992.

    [3] Fujisawa T, Kanazawa S, Ishii H, et al. 1.3-μm 4×25-Gb/s monolithically integrated light source for metro area 100-Gb/s Ethernet [J]. IEEE Photonics Technology Letters, 2011, 23(6):356-358.

    [4] Yoshimatsu T, Nada M, OgumaM, et al. Compact and high-sensitivity 100-Gb/s (4×25 Gb/s) APD-ROSA with a LAN-WDM PLC demultiplexer[J]. Opt. Express, 2012, 20(26):393-398.

    [5] Gutierrez-Castrejon R, Torres-Ferrera P. Design and technical feasibility of next 400 GbE 40-km PMD based on 16×25 Gbps architecture[J]. Lightwave Technol, 2013, 31(14): 2386-2393.

    [6] Turkiewicz J, Dewaardt H. Low complexity up to 400-Gb/s transmission in the 1310-nm wave-length domain[J]. IEEE Photonics Technology Letters, 2012, 24(11): 942-944.

    [7] Torres-Ferrera P, Gutiérrez-Castrejón R. Impact of channel-spacing on next 400 Gb/s Ethernet 40-km PMD based on 16×25 Gb/s WDM architecture[J]. Optical Fiber Technology, 2014, 20(3): 177-183.

    [8] Robinson S, Nakkeeran R. PCRR based add drop filter for ITU-T G.694.2 CWDM systems[J]. Optik-International Journal for Light and Electron Optics, 2013, 124(5): 393-398.

    [9] Mehdizadeh F, Soroosh M. A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities[J]. Photonic Network Communications, 2016, 31(1): 65-70.

    [10] Ghaffari A, Djavid M, Monifi F, et al. Photonic crystal power splitter and wavelength multi/demultiplexer based on directional coupling[J]. Journal of Optics A: Pure and Applied Optics, 2008, 10(7): 75203-75209.

    [11] Ghaffari A, Monifi F, Djavid M, et al. Photonic crystal bends and power splitters based on ring resonators[J]. Optics Communications, 2008, 281(23): 5929-5934.

    [12] Ghaffari A, Monifi F, Djavid M, et al. Analysis of photonic crystal power splitters with different configurations[J]. Journal of Applied Sciences, 2008, 8(8): 1416-1425.

    [13] Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves [J]. Comput. Phys. 1994, 114(2): 185-200.

    [14] Goldberg M. Stability criteria for finite difference approximations to parabolic systems [J]. Applied Numerical Mathematics, 2000, 33(1-4): 509-515.

    [15] Zhu Z, Brown T G. Full-vectorial finite-difference analysis of microstructured optical fibers [J]. Opt. Express, 2002, 10(17): 853-864.

    WU Li-Heng, WANG Ming-Hong. Study on the filter based on photonic crystal 1×3 cavity[J]. Journal of Infrared and Millimeter Waves, 2018, 37(6): 761
    Download Citation