• Laser & Optoelectronics Progress
  • Vol. 57, Issue 11, 111431 (2020)
Siyuan Liu1、2 and Jingyu Zhang1、2、*
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
  • 2Key Laboratory of Information Storage System, Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
  • show less
    DOI: 10.3788/LOP57.111431 Cite this Article Set citation alerts
    Siyuan Liu, Jingyu Zhang. Principles and Applications of Ultrafast Laser Processing Based on Spatial Light Modulators[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111431 Copy Citation Text show less
    References

    [1] Couairon A, Sudrie L, Franco M et al. Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses[J]. Physical Review B, 71, 125435(2005).

    [2] Tamaki T, Watanabe W, Nishii J et al. Welding of transparent materials using femtosecond laser pulses[J]. Japanese Journal of Applied Physics, 44, L687-L689(2005).

    [3] Kawata S, Sun H B, Tanaka T et al. Finer features for functional microdevices[J]. Nature, 412, 697-698(2001).

    [4] Friedman N J, Palanker D V, Schuele G et al. Femtosecond laser capsulotomy[J]. Journal of Cataract & Refractive Surgery, 37, 1189-1198(2011).

    [5] Drevinskas R, Beresna M, Zhang J Y et al. Ultrafast laser-induced metasurfaces for geometric phase manipulation[J]. Advanced Optical Materials, 5, 1600575(2017).

    [6] Liao Y, Song J X, Li E et al. Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing[J]. Lab on a Chip, 12, 746-749(2012).

    [7] Parthenopoulos D A, Rentzepis P M. Three-dimensional optical storage memory[J]. Science, 245, 843-845(1989).

    [8] Yong J L, Chen F, Yang Q et al. Bioinspired underwater superoleophobic surface with ultralow oil-adhesion achieved by femtosecond laser microfabrication[J]. Journal of Materials Chemistry A, 2, 8790-8795(2014).

    [9] Huang X J, Guo Q Y, Yang D D et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium[J]. Nature Photonics, 14, 82-88(2020).

    [10] Kim D, Keesling A, Omran A et al. Large-scale uniform optical focus array generation with a phase spatial light modulator[J]. Optics Letters, 44, 3178-3181(2019).

    [11] Zhang C C, Hu Y L, Du W Q et al. Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels[J]. Scientific Reports, 6, 33281(2016).

    [12] Yang D, Liu L P, Gong Q H et al. Rapid two-photon polymerization of an arbitrary 3D microstructure with 3D focal field engineering[J]. Macromolecular Rapid Communications, 40, 1970017(2019).

    [13] Allegre O J, Jin Y, Perrie W et al. Complete wavefront and polarization control for ultrashort-pulse laser microprocessing[J]. Optics Express, 21, 21198-21207(2013).

    [14] Gauthier G, Lenton I. McKay Parry N, et al. Direct imaging of a digital-micromirror device for configurable microscopic optical potentials[J]. Optica, 3, 1136-1143(2016).

    [15] Dana D, Duncan W M, Slaughter J. Emerging digital micromirror device (DMD) applications[J]. Proceedings of SPIE, 4985, 14-25(2003).

    [16] Zhang Z C, You Z, Chu D P. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices[J]. Light: Science & Applications, 3, e213(2014).

    [17] Reichelt S. Spatially resolved phase-response calibration of liquid-crystal-based spatial light modulators[J]. Applied Optics, 52, 2610-2618(2013).

    [18] Cotter L K, Drabik T J, Dillon R J et al. Ferroelectric-liquid-crystal/silicon-integrated-circuit spatial light modulator[J]. Optics Letters, 15, 291-293(1990).

    [19] Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 35, 237-246(1972).

    [20] Soifer V A[M]. Iteractive methods for diffractive optical elements computation(2014).

    [21] Dufresne E R, Spalding G C, Dearing M T et al. Computer-generated holographic optical tweezer arrays[J]. Review of Scientific Instruments, 72, 1810(2001).

    [22] Curtis J E, Koss B A, Grier D G. Dynamic holographic optical tweezers[J]. Optics Communications, 207, 169-175(2002).

    [23] di Leonardo R, Ianni F, Ruocco G. Computer generation of optimal holograms for optical trap arrays[J]. Optics Express, 15, 1913-1922(2007).

    [24] Poland S P. Krstaji N, Knight R D , et al. Development of a doubly weighted Gerchberg-Saxton algorithm for use in multibeam imaging applications[J]. Optics Letters, 39, 2431-2434(2014).

    [25] Zhang J. erkauskait A, Drevinskas R , et al. Eternal 5D data storage by ultrafast laser writing in glass[J]. Proceedings of SPIE, 9736, 97360U(2016).

    [26] Yang G Z, Dong B Z, Gu B Y et al. Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison[J]. Applied Optics, 33, 209-218(1994).

    [27] Yan S H. Research on the weighted Yang-Gu algorithm[J]. Acta Photonica Sinica, 36, 530-535(2007).

    [28] Bengtsson J. Kinoform design with an optimal-rotation-angle method[J]. Applied Optics, 33, 6879-6884(1994).

    [29] Lin H, Jia B H, Gu M. Dynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabrication[J]. Optics Letters, 36, 406-408(2011).

    [30] Pang H, Wang J Z, Zhang M et al. Non-iterative phase-only Fourier hologram generation with high image quality[J]. Optics Express, 25, 14323-14333(2017).

    [31] Mengu D, Ulusoy E, Urey H. Non-iterative phase hologram computation for low speckle holographic image projection[J]. Optics Express, 24, 4462-4476(2016).

    [32] Zhang J Z, Pégard N, Zhong J S et al. 3D computer-generated holography by non-convex optimization[J]. Optica, 4, 1306-1313(2017).

    [33] Makowski M. Iterative design of multiplane holograms: experiments and applications[J]. Optical Engineering, 46, 045802(2007).

    [34] Sinclair G, Leach J, Jordan P et al. Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping[J]. Optics Express, 12, 1665-1670(2004).

    [35] Ren H R, Lin H, Li X P et al. Three-dimensional parallel recording with a Debye diffraction-limited and aberration-free volumetric multifocal array[J]. Optics Letters, 39, 1621-1624(2014).

    [36] Pozzi P, Maddalena L, Ceffa N et al. Fast calculation of computer generated holograms for 3D photostimulation through compressive-sensing gerchberg-saxton algorithm[J]. Methods and Protocols, 2, 2(2018).

    [37] Liu D C, Nocedal J. On the limited memory BFGS method for large scale optimization[J]. Mathematical Programming, 45, 503-528(1989).

    [38] Curtis F E, Que X C. A quasi-Newton algorithm for nonconvex, nonsmooth optimization with global convergence guarantees[J]. Mathematical Programming Computation, 7, 399-428(2015).

    [39] Sinha A, Lee J, Li S et al. Lensless computational imaging through deep learning[J]. Optica, 4, 1117-1125(2017).

    [40] Lin X, Rivenson Y, Yardimci N T et al. All-optical machine learning using diffractive deep neural networks[J]. Science, 361, 1004-1008(2018).

    [41] Wiecha P R, Lecestre A, Mallet N et al. Pushing the limits of optical information storage using deep learning[J]. Nature Nanotechnology, 14, 237-244(2019).

    [42] Horisaki R, Takagi R, Tanida J. Deep-learning-generated holography[J]. Applied Optics, 57, 3859-3863(2018).

    [43] Pasienski M. DeMarco B. A high-accuracy algorithm for designing arbitrary holographic atom traps[J]. Optics Express, 16, 2176-2190(2008).

    [44] Montes-Usategui M, Pleguezuelos E, Andilla J et al. Fast generation of holographic optical tweezers by random mask encoding of Fourier components[J]. Optics Express, 14, 2101-2107(2006).

    [45] Williams H E, Luo Z Y, Kuebler S M. Effect of refractive index mismatch on multi-photon direct laser writing[J]. Optics Express, 20, 25030-25040(2012).

    [46] Marcinkevi ius A, Mizeikis V, Juodkazis S et al. Effect of refractive index-mismatch on laser microfabrication in silica glass[J]. Applied Physics A: Materials Science & Processing, 76, 257-260(2003).

    [47] Jesacher A, Booth M J. Parallel direct laser writing in three dimensions with spatially dependent aberration correction[J]. Optics Express, 18, 21090-21099(2010).

    [48] Salter P S, Booth M J. Focussing over the edge: adaptive subsurface laser fabrication up to the sample face[J]. Optics Express, 20, 19978-19989(2012).

    [49] Sun Q, Jiang H B, Liu Y et al. Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica[J]. Journal of Optics A: Pure and Applied Optics, 7, 655-659(2005).

    [50] Booth M J, Schwertner M, Wilson T et al. Predictive aberration correction for multilayer optical data storage[J]. Applied Physics Letters, 88, 031109(2006).

    [51] Itoh H, Matsumoto N, Inoue T. Spherical aberration correction suitable for a wavefront controller[J]. Optics Express, 17, 14367-14373(2009).

    [52] Salter P S, Woolley M J, Morris S M et al. Femtosecond fiber Bragg grating fabrication with adaptive optics aberration compensation[J]. Optics Letters, 43, 5993-5996(2018).

    [53] Wang P, Qi J, Liu Z M et al. Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing[J]. Scientific Reports, 7, 41211(2017).

    [54] Stone A, Jain H, Dierolf V et al. Multilayer aberration correction for depth-independent three-dimensional crystal growth in glass by femtosecond laser heating[J]. Journal of the Optical Society of America B, 30, 1234-1240(2013).

    [55] Kato J I, Takeyasu N, Adachi Y et al. Multiple-spot parallel processing for laser micronanofabrication[J]. Applied Physics Letters, 86, 044102(2005).

    [56] Kamali S M, Arbabi E, Arbabi A et al. Highly tunable elastic dielectric metasurface lenses[J]. Laser & Photonics Reviews, 10, 1002-1008(2016).

    [57] Hayasaki Y, Sugimoto T, Takita A et al. Variable holographic femtosecond laser processing by use of a spatial light modulator[J]. Applied Physics Letters, 87, 031101(2005).

    [58] Obata K, Koch J, Hinze U et al. Multi-focus two-photon polymerization technique based on individually controlled phase modulation[J]. Optics Express, 18, 17193-17200(2010).

    [59] Zandrini T, Shan O M, Parodi V et al. Multi-foci laser microfabrication of 3D polymeric scaffolds for stem cell expansion in regenerative medicine[J]. Scientific Reports, 9, 11761(2019).

    [60] Gittard S D, Nguyen A, Obata K et al. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator[J]. Biomedical Optics Express, 2, 3167-3178(2011).

    [61] Zhang J Y. Gecevi ius M, Beresna M, et al. Seemingly unlimited lifetime data storage in nanostructured glass[J]. Physical Review Letters, 112, 033901(2014).

    [62] Silvennoinen M, Kaakkunen J, Paivasaari K et al. Parallel microstructuring using femtosecond laser and spatial light modulator[J]. Physics Procedia, 41, 693-697(2013).

    [63] Li J N, Tang Y, Kuang Z et al. Multi imaging-based beam shaping for ultrafast laser-material processing using spatial light modulators[J]. Optics and Lasers in Engineering, 112, 59-67(2019).

    [64] Liu L P, Yang D, Wan W P et al. Fast fabrication of silver helical metamaterial with single-exposure femtosecond laser photoreduction[J]. Nanophotonics, 8, 1087-1093(2019).

    [65] Hernandez O, Papagiakoumou E, Tanese D et al. Three-dimensional spatiotemporal focusing of holographic patterns[J]. Nature Communications, 7, 11928(2016).

    [66] Sun B S, Salter P S, Roider C et al. Four-dimensional light shaping: manipulating ultrafast spatiotemporal foci in space and time[J]. Light: Science & Applications, 7, 17117(2018).

    [67] Saha S K, Wang D E, Nguyen V H et al. Scalable submicrometer additive manufacturing[J]. Science, 366, 105-109(2019).

    [68] Weiner A M, Heritage J P, Kirschner E M. High-resolution femtosecond pulse shaping[J]. Journal of the Optical Society of America B, 5, 1563-1572(1988).

    [69] Ma J, Cheng W J, Zhang S A et al. Coherent quantum control of two-photon absorption and polymerization by shaped ultrashort laser pulses[J]. Laser Physics Letters, 10, 085304(2013).

    [70] Zheng Y, Yao Y H, Deng L Z et al. Valence state manipulation of Sm 3+ ions via a phase-shaped femtosecond laser field[J]. Photonics Research, 6, 144(2018). http://www.opticsjournal.net/Articles/Abstract?aid=OJ1802020000900FbIeL

    [71] Zhao Y F, Wang J. High-base vector beam encoding/decoding for visible-light communications[J]. Optics Letters, 40, 4843-4846(2015).

    [72] Wang X L, Ding J P, Ni W J et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement[J]. Optics Letters, 32, 3549-3951(2007).

    [73] Rosales-Guzmán C, Bhebhe N, Forbes A. Simultaneous generation of multiple vector beams on a single SLM[J]. Optics Express, 25, 25697-25706(2017).

    [74] Gan Z S, Cao Y Y, Evans R A et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 4, 2061(2013).

    [75] Li X P, Cao Y Y, Tian N et al. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate[J]. Optica, 2, 567-570(2015).

    [76] Lin H, Gu M. Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam[J]. Applied Physics Letters, 102, 084103(2013).

    [77] Yang L, Qian D D, Xin C et al. Direct laser writing of complex microtubes using femtosecond vortex beams[J]. Applied Physics Letters, 110, 221103(2017).

    [78] Ni J C, Wang C W, Zhang C C et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material[J]. Light: Science & Applications, 6, e17011(2017).

    [79] Wang C W, Yang L, Hu Y L et al. Femtosecond mathieu beams for rapid controllable fabrication of complex microcages and application in trapping microobjects[J]. ACS Nano, 13, 4667-4676(2019).

    Siyuan Liu, Jingyu Zhang. Principles and Applications of Ultrafast Laser Processing Based on Spatial Light Modulators[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111431
    Download Citation