• Laser & Optoelectronics Progress
  • Vol. 57, Issue 6, 061006 (2020)
Jinqiang Yu1, Jin Duan1、*, Weimin Chen1, Suxin Mo1, Yingchao Li2, and Yu Chen1
Author Affiliations
  • 1School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, China
  • 2Institute of Space Optoelectronic Technology, Changchun University of Science and Technology, Changchun, Jilin 130022, China
  • show less
    DOI: 10.3788/LOP57.061006 Cite this Article Set citation alerts
    Jinqiang Yu, Jin Duan, Weimin Chen, Suxin Mo, Yingchao Li, Yu Chen. Underwater Polarization Image Fusion Based on NSST and Adaptive SPCNN[J]. Laser & Optoelectronics Progress, 2020, 57(6): 061006 Copy Citation Text show less
    NSST decomposition diagram
    Fig. 1. NSST decomposition diagram
    Architecture of the SPCNN model
    Fig. 2. Architecture of the SPCNN model
    Block diagram of polarization image fusion
    Fig. 3. Block diagram of polarization image fusion
    Diagrams of collecting underwater polarization images. (a) Principle block diagram; (b) scene diagram
    Fig. 4. Diagrams of collecting underwater polarization images. (a) Principle block diagram; (b) scene diagram
    Polarization characteristic images of different objects. (a) I images; (b) Q images; (c) U images; (d) G images; (e) D images
    Fig. 5. Polarization characteristic images of different objects. (a) I images; (b) Q images; (c) U images; (d) G images; (e) D images
    Objective evaluation results of different decomposition layers in fusion based on NSST
    Fig. 6. Objective evaluation results of different decomposition layers in fusion based on NSST
    Fused images of various algorithms in four sets of experiments. (a) Method 1; (b) method 2; (c) method 3; (d) method 4; (e) method 5; (f) method 6;(g) method 7; (h) method 8; (i) method 9; (j) method 10; (k) method 11; (l) proposed method
    Fig. 7. Fused images of various algorithms in four sets of experiments. (a) Method 1; (b) method 2; (c) method 3; (d) method 4; (e) method 5; (f) method 6;(g) method 7; (h) method 8; (i) method 9; (j) method 10; (k) method 11; (l) proposed method
    Evaluation indexNSPGroup 1Group 2Group 3Group 4
    SD‘9-7’71.793853.123129.022566.9654
    ‘maxflat’71.814653.138729.033866.9632
    ‘pyr’71.825453.145229.042766.9846
    ‘pyrexc’71.836253.146429.042566.9828
    EN‘9-7’7.28767.19276.64137.8472
    ‘maxflat’7.29897.19426.64277.8501
    ‘pyr’7.30347.10516.64537.8526
    ‘pyrexc’7.30657.10536.64847.8523
    Qabf‘9-7’0.68530.76150.75160.5803
    ‘maxflat’0.67260.76430.75270.5812
    ‘pyr’0.68780.76790.75310.5849
    ‘pyrexc’0.68760.76820.75480.5846
    MI‘9-7’4.13954.00720.58154.2157
    ‘maxflat’4.14284.00960.58264.2213
    ‘pyr’4.14634.01170.58434.2391
    ‘pyrexc’4.14784.01280.58464.2387
    Table 1. Objective evaluation results of different pyramid filters in fusion based on NSST
    Evaluation indexMethod 1Method 2Method 3Method 4Method 5Method 6
    SD56.677844.396761.114245.053744.257857.4242
    EN6.77236.26636.84616.71326.30597.3089
    Qabf0.52020.38040.51150.19630.36710.4375
    MI3.36143.26943.44112.18763.53953.7182
    Evaluation indexMethod 7Method 8Method 9Method 10Method 11Proposed method
    SD71.091357.843652.864072.619960.656971.8362
    EN6.85516.87146.92626.32196.40777.3065
    Qabf0.61600.58630.34880.59450.67200.6876
    MI3.62263.18413.26322.86244.05564.1478
    Table 2. Evaluation index values of the fused images by various algorithms in the first group of experiments
    Evaluation indexMethod 1Method 2Method 3Method 4Method 5Method 6
    SD40.138628.957850.948029.878128.821548.4425
    EN6.62816.17236.76636.47046.15897.1111
    Qabf0.65340.44330.60090.18360.42330.5153
    MI3.14913.14273.28221.67913.77062.8008
    Evaluation indexMethod 7Method 8Method 9Method 10Method 11Proposed method
    SD39.531439.531439.953351.619443.242553.1464
    EN6.74396.74396.62915.91566.72107.1053
    Qabf0.72710.72710.74380.59640.72480.7682
    MI3.50813.18343.41802.68343.72384.0128
    Table 3. Evaluation index values of the fused images by various algorithms in the second group of experiments
    Evaluation indexMethod 1Method 2Method 3Method 4Method 5Method 6
    SD24.603015.838227.707919.980915.736228.4300
    EN5.91185.39736.19075.75755.40246.4786
    Qabf0.75520.39460.75250.49610.37080.3936
    MI1.66143.31932.15691.43213.35283.5814
    Evaluation indexMethod 7Method 8Method 9Method 10Method 11Proposed method
    SD25.682021.850424.423428.147626.816529.0425
    EN5.92895.76225.92896.01475.79606.6484
    Qabf0.76640.70170.74910.68600.69300.7548
    MI1.83972.33531.60622.07463.52824.1863
    Table 4. Evaluation index values of the fused images by various algorithms in the third group of experiments
    Evaluation indexMethod 1Method 2Method 3Method 4Method 5Method 6
    SD47.469637.827266.441539.187037.708451.4002
    EN7.25896.89497.68917.02766.90397.5925
    Qabf0.47200.37490.44550.27000.37070.3161
    MI2.82713.80163.37552.84603.86732.0153
    Evaluation indexMethod 7Method 8Method 9Method 10Method 11Proposed method
    SD51.429646.480145.961865.310763.655266.9828
    EN7.42647.29037.26447.67956.93697.8523
    Qabf0.45370.46730.43690.52420.39810.5846
    MI3.04103.08712.59223.24633.98004.2387
    Table 5. Evaluation index values of the fused images by various algorithms in the fourth group of experiments
    Jinqiang Yu, Jin Duan, Weimin Chen, Suxin Mo, Yingchao Li, Yu Chen. Underwater Polarization Image Fusion Based on NSST and Adaptive SPCNN[J]. Laser & Optoelectronics Progress, 2020, 57(6): 061006
    Download Citation