• Acta Optica Sinica
  • Vol. 41, Issue 14, 1422003 (2021)
Sichen Zhang1、2, Zhuo Li1、2, Yanze Gao1、2、*, Rui Shi1、2, Jian Du3, Qingfeng Shi1、2, Xin Wang1、2, and Suhui Yang1、2
Author Affiliations
  • 1School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing 100081, China
  • 3Science and Technology on Special System Simulation Laboratory, Beijing Simulation Center, Beijing 100854, China
  • show less
    DOI: 10.3788/AOS202141.1422003 Cite this Article Set citation alerts
    Sichen Zhang, Zhuo Li, Yanze Gao, Rui Shi, Jian Du, Qingfeng Shi, Xin Wang, Suhui Yang. Design of Optical System for Infrared Scene Projection in Cryogenic Environment[J]. Acta Optica Sinica, 2021, 41(14): 1422003 Copy Citation Text show less
    Principle of the infrared image generation system. (a) Structure of the MEMS conversion film; (b) projection light path of the infrared image
    Fig. 1. Principle of the infrared image generation system. (a) Structure of the MEMS conversion film; (b) projection light path of the infrared image
    Structure of the coaxial Cassegrain system
    Fig. 2. Structure of the coaxial Cassegrain system
    Initial structure of the projection system
    Fig. 3. Initial structure of the projection system
    Optimized structure of the projection system
    Fig. 4. Optimized structure of the projection system
    MTF curves of the projection system
    Fig. 5. MTF curves of the projection system
    Energy diagram of the diffraction encircling circle of the projection system
    Fig. 6. Energy diagram of the diffraction encircling circle of the projection system
    Installation of the primary mirror. (a) Clamping ring installation; (b) tablet installation
    Fig. 7. Installation of the primary mirror. (a) Clamping ring installation; (b) tablet installation
    Installation of the secondary mirror. (a) Clamping ring installation; (b) tablet installation
    Fig. 8. Installation of the secondary mirror. (a) Clamping ring installation; (b) tablet installation
    Deformation analysis results of the primary mirror. (a) Clamping ring installation; (b) tablet installation
    Fig. 9. Deformation analysis results of the primary mirror. (a) Clamping ring installation; (b) tablet installation
    Deformation analysis results of the secondary mirror. (a) Clamping ring installation; (b) tablet installation
    Fig. 10. Deformation analysis results of the secondary mirror. (a) Clamping ring installation; (b) tablet installation
    MTF of the system in 2 fixed modes
    Fig. 11. MTF of the system in 2 fixed modes
    Opto-mechanical structure of the projection system
    Fig. 12. Opto-mechanical structure of the projection system
    MTF of the system under different thermal expansion coefficients
    Fig. 13. MTF of the system under different thermal expansion coefficients
    Optimization analysis flow chart of the projection system
    Fig. 14. Optimization analysis flow chart of the projection system
    Change curve of the d with temperature
    Fig. 15. Change curve of the d with temperature
    MTF curves of the system at different temperatures. (a) 300 K; (b) 260 K; (c) 220 K; (d) 180 K; (e) 140 K; (f) 100 K
    Fig. 16. MTF curves of the system at different temperatures. (a) 300 K; (b) 260 K; (c) 220 K; (d) 180 K; (e) 140 K; (f) 100 K
    MTF test device of the projection system
    Fig. 17. MTF test device of the projection system
    Experimental results of the projection system. (a) Thermal image of the knife edge; (b) MTF curve
    Fig. 18. Experimental results of the projection system. (a) Thermal image of the knife edge; (b) MTF curve
    Projection experimental setup at room temperature. (a) Experimental setup; (b) infrared image
    Fig. 19. Projection experimental setup at room temperature. (a) Experimental setup; (b) infrared image
    Projection experimental setup at low temperature. (a) Experimental setup; (b) infrared image
    Fig. 20. Projection experimental setup at low temperature. (a) Experimental setup; (b) infrared image
    Surface coefficientPrimary mirrorSecondary mirror
    K-10.20-1.36
    α100
    α2-2.625×10-8-9.427×10-9
    α39.262×10-132.353×10-11
    α4-2.97×10-17-1.039×10-14
    Table 1. Surface coefficients of the primary and secondary mirrors of the projection system
    No.CoefficientNo.CoefficientNo.Coefficient
    11.69×10-314-3.86×10-627-2.97×10-6
    2-6.84×10-715-5.34×10-628-2.18×10-5
    3-1.33×10-6166.49×10-429-6.02×10-6
    49.60×10-417-1.48×10-5301.01×10-6
    5-6.76×10-618-5.26×10-631-1.55×10-6
    6-3.22×10-6192.44×10-6324.42×10-6
    7-7.47×10-7201.86×10-633-4.72×10-7
    81.01×10-621-3.20×10-634-3.07×10-6
    9-1.06×10-322-1.92×10-635-1.03×10-5
    101.94×10-6231.07×10-6362.91×10-4
    111.95×10-6246.86×10-637-3.88×10-5
    12-3.15×10-625-3.66×10-4
    13-2.98×10-626-8.19×10-7
    Table 2. Zernike coefficient of the primary mirror
    No.CoefficientNo.CoefficientNo.Coefficient
    1-8.73×10-5142.42×10-6276.01×10-6
    2-2.65×10-715-6.81×10-7281.89×10-6
    39.28×10-716-3.21×10-629-7.42×10-7
    41.98×10-5171.15×10-630-1.21×10-5
    57.55×10-7185.89×10-731-3.01×10-6
    61.56×10-619-3.39×10-532-3.70×10-7
    72.51×10-620-8.01×10-6338.70×10-7
    8-6.07×10-7212.34×10-6342.08×10-7
    9-8.27×10-6222.18×10-635-3.61×10-7
    10-4.26×10-5233.07×10-7361.9×10-6
    11-9.98×10-6241.30×10-8372.05×10-6
    124.74×10-6251.48×10-6
    133.67×10-6262.67×10-6
    Table 3. Zernike polynomial coefficients of the secondary mirror
    Sichen Zhang, Zhuo Li, Yanze Gao, Rui Shi, Jian Du, Qingfeng Shi, Xin Wang, Suhui Yang. Design of Optical System for Infrared Scene Projection in Cryogenic Environment[J]. Acta Optica Sinica, 2021, 41(14): 1422003
    Download Citation