• Infrared and Laser Engineering
  • Vol. 50, Issue 11, 20200522 (2021)
Hui Chen1、2, Zhenxu Bai1、2, Jiancai Wang3, Bingyuan Zhang3, and Zhen'ao Bai4、5、*
Author Affiliations
  • 1Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
  • 2Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
  • 3Shandong Key Laboratory of Optical Communication Science and Technology, School of Physicsc Science and Information Technology, Liaocheng University, Liaocheng 252059, China
  • 4Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
  • 5Beijing GK Laser Technology Co., Ltd., Beijing 102211, China
  • show less
    DOI: 10.3788/IRLA20200522 Cite this Article
    Hui Chen, Zhenxu Bai, Jiancai Wang, Bingyuan Zhang, Zhen'ao Bai. Hundred-watt green picosecond laser based on LBO frequency-doubled photonic crystal fiber amplifier[J]. Infrared and Laser Engineering, 2021, 50(11): 20200522 Copy Citation Text show less
    References

    [1] C Dorman, M Schulze. Picosecond micromachining update: Unique fiber-based laser technology delivers high pulse energy and average power. Laser Technik Journal, 5, 44-47(2010).

    [2] N Muhammad, D Whitehead, A Boor, et al. Picosecond laser micromaching of nitinol and ptatimum alloy for coronary stent applications. Applied Physics A-Materials Science & Processing, 106, 607-617(2012).

    [3] Neuenschwer B, Bucher G F, Nussbaum C, et al. Processing of metals dielectric materials with pslaser pulses: results, strategies, limitations needs[C]Proc of SPIE, 2010, 7584: 75840R.

    [4] Shang Lu, Siqi Lv, Meng Chen, et al. Realization of single-pulse energy 3 mJ, repetition frequency 1 kHz picosecond super-Gaussian beam. Infrared and Laser Engineering, 48, 1005012(2019).

    [5] R R Gattass, E Mazur. Femtosecond laser micromachining in transparent materials. Nature Photonics, 2, 219-225(2008).

    [6] E G Gamaly, N R Madsen, M Duering, et al. Ablation of metals with picosecond laser pulses: Evidence of long-lived nonequilibrium conditions at the surface. Physical Review B, 71, 174405(2005).

    [7] H Peng, C Yang, S Lu, et al. All-solid-state picosecond radially polarized laser and its processing characteristics. Infrared and Laser Engineering, 48, 0106003(2019).

    [8] Z N Bai, Z X Bai, X L Sun, et al. A 33.2 W high beam quality chirped-pulse amplification-based femtosecond laser for industrial processing. Materials, 13, 2841(2020).

    [9] Z Wang, W Fu, R Zhang. Numerical simulation of femtosecond laser multi-pulse ablation of metal iron. Infrared and Laser Engineering, 48, 0706002(2019).

    [10] Y Y Lin, P Lee, J L Xu, et al. High-pulse-energy topological insulator Bi2Te3-based passive q-switched solid-state Laser. IEEE Photonics Journal, 8, 1-10(2016).

    [11] S Liu, D Jung, J C Norman, et al. 490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si. Electronics Letters, 54, 432-433(2018).

    [12] Li Zheng, Huibo Wang, Wenlong Tian, et al. LD-pumped high-repetition-rate all-solid-state femtosecond lasers (Invited). Infrared and Laser Engineering, 49, 20201069(2020).

    [13] Z Bai, H Yuan, Z Liu, et al. Stimulated Brillouin scattering materials, experimental design and applications: A review. Optical Materials, 75, 626-645(2018).

    [14] Z Bai, Z Bai, C Yang, et al. High pulse energy, high repetition picosecond chirped-multi-pulse regenerative amplifier laser. Optics & Laser Technology, 46, 25-28(2013).

    [15] U Keller, G W 'tHooft, W H Knox, et al. Femtosecond pulses from a continuously self-starting passively mode-locked Ti: sapphire laser. Optics Letters, 16, 1022-1024(1991).

    [16] Z Li, N Dong, Y Zhang, et al. Invited Article: Mode-locked waveguide lasers modulated by rhenium diselenide as a new saturable absorber. ACS Photonics, 3, 080802(2018).

    [17] J Kleinbauer, R Knappe, R Wallenstein. 13 W picosecond Nd: GdVO4 regenerative amplifier with 200 kHz repetition rate. Applied Physics B, Lasers and Optics, B81, 163-166(2005).

    [18] A Agnesi, L Carra, P Dallocchio, et al. 210 μJ picosecond pulses from a quasi-CW Nd: YVO4 grazing-incidence two-stage slab amplifier package. IEEE Journal of Quantum Electronics, 44, 952-957(2008).

    [19] H Liu, C Gao, J Tao, et al. Compact tunable high power picosecond source based on Yb-doped fiber amplification of gain switch laser diode. Optics Express, 16, 7888-7893(2008).

    [20] D J Richardson, J Nilsson, W A Clarkson. High power fiber lasers: current status and future perspectives. Journal of the Optical Society of America B, 27, B63-B92(2010).

    [21] B W Liu, M L Hu, X H Fang, et al. High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing. Laser Physics Letters, 6, 44-48(2010).

    [22] C P K Manchee, J Möller, R J D Miller. Highly stable, 100 W average power from fiber-based ultrafast laser system at 1030 nm based on single-pass photonic-crystal rod amplifier. Optics Communications, 437, 6-10(2019).

    [23] F Röser, D Schimpf, O Schmidt, et al. 90 W average power 100 μJ energy femtosecond fiber chirped-pulse amplification system. Optics Letters, 32, 2230-2232(2007).

    CLP Journals

    [1] Feng Gao, Yunpeng Cai, Zhenxu Bai, Yaoyao Qi, Bingzheng Yan, Yulei Wang, Zhiwei Lv, Jie Ding. SHG efficiency of nonlinear crystal walk-off effect[J]. Infrared and Laser Engineering, 2023, 52(8): 20230254

    [2] Bo Zhang, Dongxia Hu, Zhitao Peng, Rui Zhang, Dandan Zhou, Zhao Dang, Junpu Zhao. Laser time fiducial system for high-power laser facility based on optic-electric and electric-optic conversion[J]. Infrared and Laser Engineering, 2023, 52(11): 20230234

    [3] Zhiwei Lv, Zhongze Liu, Hui Chen, Duo Jin, Xin Hao, Wenqiang Fan, Yulei Wang, Zhenxu Bai. Review of multi-wavelength laser technology based on crystalline Raman conversion (invited)[J]. Infrared and Laser Engineering, 2023, 52(8): 20230420

    Hui Chen, Zhenxu Bai, Jiancai Wang, Bingyuan Zhang, Zhen'ao Bai. Hundred-watt green picosecond laser based on LBO frequency-doubled photonic crystal fiber amplifier[J]. Infrared and Laser Engineering, 2021, 50(11): 20200522
    Download Citation