• Chinese Journal of Quantum Electronics
  • Vol. 39, Issue 1, 50 (2022)
Jing PAN1、2、*, Hao WANG1、2, Xing FU1、2, and Qiang LIU1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2022.01.003 Cite this Article
    PAN Jing, WANG Hao, FU Xing, LIU Qiang. Airy vortex and its derived light field[J]. Chinese Journal of Quantum Electronics, 2022, 39(1): 50 Copy Citation Text show less
    References

    [1] Durnin J, Jr Miceli J J, Eberly J H. Diffraction-free beams [J]. Physical Review Letters, 1987, 58(15): 1499-1501.

    [2] Gutiérrez-Vega J C, Iturbe-Castillo M D, Chávez-Cerda S. Alternative formulation for invariant optical fields: Mathieu beams [J]. Optics Letters, 2000, 25(20): 1493-1495.

    [3] Berry M V, Balazs N L. Nonspreading wave packets [J]. American Journal of Physics, 1979, 47(3): 264-267.

    [4] Ring J D, Lindberg J, Mourka A, et al. Auto-focusing and self-healing of Pearcey beams [J]. Optics Express, 2012, 20(17): 18955-18966.

    [5] Siviloglou G A, Broky J, Dogariu A, et al. Ballistic dynamics of Airy beams [J]. Optics Letters, 2008, 33(3): 207-209.

    [6] Baumgartl J, Mazilu M, Dholakia K. Optically mediated particle clearing using Airy wavepackets [J]. Nature Photonics, 2008, 2(11): 675-678.

    [7] Polynkin P, Kolesik M, Moloney J. Filamentation of femtosecond laser Airy beams in water [J]. Physical Review Letters, 2009, 103(12): 123902.

    [8] Vettenburg T, Dalgarno H I C, Nylk J, et al. Light-sheet microscopy using an Airy beam [J]. Nature Methods, 2014, 11(5): 541-544.

    [9] Minovich A, Klein A E, Janunts N, et al. Generation and near-field imaging of Airy surface plasmons [J]. Physical Review Letters, 2011, 107(11): 116802.

    [10] Papazoglou D G, Efremidis N K, Christodoulides D N, et al. Observation of abruptly autofocusing waves [J]. Optics Letters, 2011, 36(10): 1842-1844.

    [11] Zhang P, Prakash J, Zhang Z, et al. Trapping and guiding microparticles with morphing autofocusing Airy beams [J]. Optics Letters, 2011, 36(15): 2883-2885.

    [12] Panagiotopoulos P, Papazoglou D G, Couairon A, et al. Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets [J]. Nature Communications, 2013, 4(1): 1-6.

    [13] Rubinsztein-Dunlop H, Forbes A, Berry M V, et al. Roadmap on structured light [J]. Journal of Optics, 2016, 19(1): 013001.

    [14] Shen Y J, Wang X J, Xie Z W, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities [J]. Light: Science & Applications, 2019, 8(1): 1-29.

    [15] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing [J]. Nature Photonics, 2012, 6(7): 488-496.

    [16] Wang J. Advances in communications using optical vortices [J]. Photonics Research, 2016, 4(5): B14-B28.

    [17] Padgett M, Bowman R. Tweezers with a twist [J]. Nature Photonics, 2011, 5(6): 343-348.

    [18] Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons [J]. Nature, 2001, 412(6844): 313-316.

    [19] Fang X, Ren H, Gu M. Orbital angular momentum holography for high-security encryption [J]. Nature Photonics, 2020, 14(2): 102-108.

    [20] Mazilu M, Baumgartl J, Cizmár T, et al. Accelerating vortices in Airy beams [C]. Proceedings of SPIE-The International Society for Optical Engineering, 2009, 7430.

    [21] Dai H T, Liu Y J, Luo D, et al. Propagation dynamics of an optical vortex imposed on an Airy beam [J]. Optics Letters, 2010, 35(23): 4075-4077.

    [22] Cheng K, You Y Q, Zhong X Q, et al. Phase singularities and energy fluxes of a noncanonical vortex dipole Airy beam in the far field [J]. Journal of Modern Optics, 2015, 62(17): 1-10.

    [23] Fang Z X, Chen Y, Ren Y X, et al. Interplay between topological phase and self-acceleration in a vortex symmetric Airy beam [J]. Optics Express, 2018, 26(6): 7324-7335.

    [24] Xu C, You W, Deng D M. Multioptical bottles from second-order chirped symmetric Airy vortex beams [J]. Optics Letters, 2020, 45(13): 3502-3505.

    [25] Chen Y K, Lin X W, Mo S Y, et al. Propagation dynamics of deformed 2D vortex Airy beams [J]. Chinese Optics Letters, 2017, 15(8): 080801.

    [26] Wu Y L, Li S, Nie J S. Evolution dynamics of vortex quasi-Airy beams[J]. Journal of the Optical Society of America B, 2018, 35(5): 972-979.

    [27] Chen B, Chen C, Peng X, et al. Propagation of sharply autofocused ring Airy Gaussian vortex beams [J]. Optics Express, 2015, 23(15): 19288.

    [28] Chen M, Huang S, Wei S. Tight focusing of radially polarized circular Airy vortex beams [J]. Optics Communications, 2017, 402: 672-677.

    [29] Xie W, Zhang P, Wang H, et al. Propagation of a vortex elliptical Airy beam [J]. Optics Communications, 2018, 427: 288-293.

    [30] Cao B, Shen D, Qiu Z, et al. Characteristics of elliptical Airy beam with circular concentric vortex and its realization [J]. Journal of the Optical Society of America A, 2020, 37(12): 1883-1887.

    [31] Xu C J. Circular symmetric Airy beam [J]. Optics Communications, 2020, 475: 126190.

    [32] Guo K, Xie J, Chen G, et al. Abruptly autofocusing properties of the chirped circular Airy Gaussian vortex beams [J]. Optics Communications, 2020, 477: 126369.

    [33] Li P, Liu S, Peng T, et al. Spiral autofocusing Airy beams carrying power-exponent-phase vortices [J]. Optics Express, 2014, 22(7): 7598-7606.

    [34] Huang X, Shi X, Deng Z, et al. Effects of a modulated vortex structure on the diffraction dynamics of ring Airy Gaussian beams [J]. Journal of the Optical Society of America A, 2017, 34(9): 1720-1726.

    [35] Wu Y, Lin Z, Xu C, et al. Off-axis and multi optical bottles from the ring Airy Gaussian vortex beam with the astigmatic phase [J]. Annalen der Physik, 2020, 532(7): 2000188.

    [36] Porfirev A P, Fomchenkov S A, Khonina S N. Experimental investigation of complex circular Airy beam characteristics [C]. International Society for Optics and Photonics, 2018: 107170Q.

    [37] Yan X, Guo L, Cheng M, et al. Controlling abruptly autofocusing vortex beams to mitigate crosstalk and vortex splitting in free-space optical communication [J]. Optics Express, 2018, 26(10): 12605-12619.

    [38] Brimis A, Makris K G, Papazoglou D G. Tornado waves [J]. Optics Letters, 2020, 45(2): 280-283.

    [39] Efremidis N K, Chen Z, Segev M, et al. Airy beams and accelerating waves: An overview of recent advances [J]. Optica, 2019, 6(5): 686-701.

    [40] Unnikrishnan K, Rau A R P. Uniqueness of the Airy packet in quantum mechanics [J]. American Journal of Physics, 1996, 64(8): 1034-1035.

    [41] Siviloglou G A, Christodoulides D N. Accelerating finite energy Airy beams [J]. Optics Letters, 2007, 32(8): 979-981.

    [42] Siviloglou G A, Broky J, Dogariu A, et al. Observation of accelerating Airy beams [J]. Physical Review Letters, 2007, 99(21): 213901.

    [43] Cai Z, Liu Y, Zhang C, et al. Continuous cubic phase microplates for generating high-quality Airy beams with strong deflection [J]. Optics Letters, 2017, 42(13): 2483-2486.

    [44] Polynkin P, Kolesik M, Moloney J V, et al. Curved plasma channel generation using ultraintense Airy beams [J]. Science, 2009, 324(5924): 229-232.

    [45] Papazoglou D G, Suntsov S, Abdollahpour D, et al. Tunable intense Airy beams and tailored femtosecond laser filaments [J]. Physical Review A, 2010, 81(6): 061807.

    [46] Yalizay B, Soylu B, Akturk S. Optical element for generation of accelerating Airy beams [J]. Journal of the Optical Society of America A, 2010, 27(10): 2344-2346.

    [47] Hao W M, Wang J, Chen L. Compact broadband silicon-integrated Airy beam emitter [J]. Optics Letters, 2021, 46(17): 4084-4087.

    [48] Yi H, Zhang P, Lou C, et al. Optimal control of the ballistic motion of Airy beams [J]. Optics Letters, 2010, 35(13): 2260-2262.

    [49] Siviloglou G A, Broky J, Dogariu A, et al. Ballistic dynamics of Airy beams [J]. Optics Letters, 2008, 33(3): 207-209.

    [50] Broky J, Siviloglou G A, Dogariu A, et al. Self-healing properties of optical Airy beams [J]. Optics Express, 2008, 16(17): 12880-12891.

    [51] Zhang P, Hu Y, Bongiovanni D, et al. Unveiling the link between Airy-like self-acceleration and diametric drive acceleration [J]. Physical Review Letters, 2021, 127(8): 083901.

    [52] Liang Y, Yi H, Ye Z, et al. Dynamical deformed Airy beams with arbitrary angles between two wings [J]. Journal of the Optical Society of America A, 2014, 31(7): 1468-1472.

    [53] Qian Y, Zhang S. Quasi-Airy beams along tunable propagation trajectories and directions [J]. Optics Express, 2016, 24(9): 9489-9500.

    [54] Vaveliuk P, Lencina A, Rodrigo J A, et al. Symmetric Airy beams [J]. Optics Letters, 2014, 39(8): 2370-2373.

    [55] Fang Z X, Ren Y X, Gong L, et al. Shaping symmetric Airy beam through binary amplitude modulation for ultralong needle focus [J]. Journal of Applied Physics, 2015, 118(20): 203102.

    [56] Chremmos I, Zhang P, Prakash J, et al. Fourier-space generation of abruptly autofocusing beams and optical bottle beams [J]. Optics Letters, 2011, 36(18): 3675-3677.

    [57] Wang A. Research on Experimental Realization of Airy Beam and Abruptly Autofocusing Property of Circular Airy Beam [D]. Hangzhou: Zhejing University, 2015.

    [58] Wei B Y, Chen P, Ge S J, et al. Generation of self-healing and transverse accelerating optical vortices [J]. Applied Physics Letters, 2016, 109(12): 121105.

    [59] Zhou L, Zhou T, Wang F, et al. Realization and measurement of Airy transform of Gaussian vortex beams [J]. Optics & Laser Technology, 2021, 143(21): 107334.

    [60] Chen R P, Zhong L X, Wu Q, et al. Propagation properties and M-2 factors of a vortex Airy beam [J]. Optics & Laser Technology, 2012, 44(7): 2015-2019.

    [61] Gao M S, Wang G H, Yang X B, et al. Goos-Hnchen and Imbert-Fedorov shifts of off-axis Airy vortex beams [J]. Optics Express, 2020, 28(20): 28916-28923.

    [62] Cheng K, Zhong X, Xiang A. Propagation dynamics, Poynting vector and accelerating vortices of a focused Airy vortex beam [J]. Optics & Laser Technology, 2014, 57: 77-83.

    [63] Chen R P, Chew K H. Far-field properties of a vortex Airy beam [J]. Laser & Particle Beams, 2013, 31(01): 9-15.

    [64] Dai H T, Liu Y J, Luo D, et al. Propagation properties of an optical vortex carried by an Airy beam: Experimental implementation [J]. Optics Letters, 2011, 36(9): 1617-1619.

    [65] Wei B Y, Liu S, Chen P, et al. Vortex Airy beams directly generated via liquid crystal q-Airy-plates [J]. Applied Physics Letters, 2018, 112(12): 121101.

    [66] Vyas S, Chia Y H, Luo Y. Conventional volume holography for unconventional Airy beam shapes [J]. Optics Express, 2018, 26(17): 21979-21991.

    [67] Zhou J, Liu Y, Ke Y, et al. Generation of Airy vortex and Airy vector beams based on the modulation of dynamic and geometric phases [J]. Optics Letters, 2015, 40(13): 3193-3196.

    [68] Singh B K, Remez R, Tsur Y, et al. Measurement of acceleration and orbital angular momentum of Airy beam and Airy-vortex beam by astigmatic transformation [J]. Optics Letters, 2015, 40(22): 5411-5414.

    [69] Han K, Ji K W, Zhang G Q, et al. Propagation properties of the accelerating beams generated by discrete Airy-vortex phase mask [C]. Journal of Physics: Conference Series, 2017, 867: 012021.

    [70] Han K, Ji K, Li S, et al. Observation of the composite Airy-like accelerating beams generated by the discrete vortex-cubic phase masks [J]. Optik, 2018, 157: 1122-1128.

    [71] Yang X J, Wu Z S. Paraxial propagation of the second-order Airy vortex beams in the free space [C]. th International Symposium on Antennas, Propagation and EM Theory (ISAPE), 2018: 1-3.

    [72] Zhong W P, Belic M, Zhang Y Q. Three-dimensional localized Airy-Laguerre-Gaussian wave packets in free space [J]. Optics Express, 2015, 23(18): 23867-23876.

    [73] Deng F, Deng D. Three-dimensional localized Airy-Hermite-Gaussian and Airy-Helical-Hermite-Gaussian wave packets in free space [J]. Optics Express, 2016, 24(5): 5478-5486.

    [74] Peng Y, Chen B, Peng X, et al. Self-accelerating Airy-Ince-Gaussian and Airy-Helical-Ince-Gaussian light bullets in free space [J]. Optics Express, 2016, 24(17): 18973-18985.

    [75] Deng F, Zhang Z, Huang J, et al. Self-decelerating Airy-Elegant-Hermite-Gaussian and Airy-Helical-Elegant-Hermite-Gaussian wave packets [J]. Journal of the Optical Society of America B, 2016, 33(11): 2204-2208.

    [76] Huang X, Cao Q, Li H, et al. Generation of versatile vortex linear light bullet [C]. CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper JTu5A.11.

    [77] Li H, Huang X, Cao Q, et al. Generation of three-dimensional versatile vortex linear light bullets (Invited Paper) [J]. Chinese Optics Letters, 2017, 15(3): 030009.

    [78] Peng X, Peng Y L, Li D D, et al. Spatiotemporal controllable Airy-Airy-vortex light bullets in free space [J]. Laser Physics Letters, 2017, 14(12): 126001.

    [79] Zhuang J, Deng D, Chen X, et al. Spatiotemporal sharply autofocused dual-Airy-ring Airy Gaussian vortex wave packets [J]. Optics Letters, 2018, 43(2): 222-225.

    [80] Shi Z W, Xue J, Zhu X, et al. Propagation of an Airy-Gaussian beam in defected photonic lattices [J]. Applied Physics B, 2017, 123(5): 159.

    [81] Yang Q, Zhu W Z, Xu C J, et al. Propagation of the radially polarized Airy vortex beams in uniaxial crystals orthogonal to the optical axis [J]. Journal of the Optical Society of America A, 2019, 36(6): 994-1002.

    [82] Zhang J, Zhou K, Liang J, et al. Nonparaxial propagation of the chirped Airy vortex beams in uniaxial crystal orthogonal to the optical axis [J]. Optics Express, 2018, 26(2): 1290-1304.

    [83] Yang X J, Wu Z S, Qu T. Paraxial propagation of cosh-Airy vortex beams in chiral medium[J]. Chinese Physics B, 2020, 29(3): 034201.

    [84] Li H, Liu H, Chen X. Nonlinear generation of Airy vortex beam [J]. Optics Express, 2018, 26(16): 21204-21209.

    [85] Liu Y, Chen W, Tang J, et al. Switchable second-harmonic generation of airy beam and airy vortex beam [J]. Advanced Optical Materials, 2021, 9(4): 2001776.

    [86] Chen C, Peng X, Chen B, et al. Propagation of an Airy-Gaussian vortex beam in linear and nonlinear media [J]. Journal of Optics, 2016, 18(5): 055505.

    [87] Chen R P, Chew K-H, He S. Dynamic control of collapse in a vortex Airy beam [J]. Scientific Reports, 2013, 3(1): 1-9.

    [88] Driben R, Meier T. Nonlinear dynamics of Airy-vortex 3D wave packets: Emission of vortex light waves [J]. Optics Letters, 2014, 39(19): 5539-5542.

    [89] Chen S J, Qi Z T, Xie J T, et al. Propagation properties of Airy Gaussian vortex beams in strongly nonlocal nonlinear media [J]. Optics Communications, 2018, 429: 72-79.

    [90] Huang Z, Zhu W, Feng Y, et al. Spatiotemporal self-accelerating Airy-Hermite-Gaussian and Airy-helical-Hermite-Gaussian wave packets in strongly nonlocal nonlinear media [J]. Optics Communications, 2019, 441: 195-207.

    [91] Chen G, Sun Q, Xie J, et al. Propagation properties of Airy hollow Gaussian vortex beams through the strongly nonlocal nonlinear media [J]. Applied Physics, 2019, 125(8): 149.

    [92] Peng X, He Y, Deng D. Three-dimensional chirped Airy complex-variable-function Gaussian vortexwave packets in a strongly nonlocal nonlinear medium [J]. Optics Express, 2020, 28(2): 1690-1700.

    [93] Zhu W, Guan J, Deng F, et al. The propagation properties of the first-order and the second-order Airy vortex beams through strongly nonlocal nonlinear medium [J]. Optics Communications, 2016, 380: 434-441.

    [94] Wang Q, Yang J R, Mao J J. Oblique propagation of rotating elliptic vortex complex Airy soliton in nonlocal nonlinear media [J]. Optics Communications, 2019, 443: 110-115.

    [95] Wu L, Liu Y J, Wu J H, et al. Airy vortex electron plasma wave [J]. Physics of Plasmas, 2019, 26(9): 092111.

    [96] Wu L, Wu J H, Deng D M. Propagation properties of the chirped Airy-Gaussian vortex electron plasma wave [J]. Chinese Physics B, 2020, 29(12): 125202.

    [97] Wang X, Yang Z, Zhao S. Influence of oceanic turbulence on propagation of Airy vortex beam carrying orbital angular momentum [J]. Optik, 2018, 176: 49-55.

    [98] Davis J A, Cottrell D M, Sand D. Abruptly autofocusing vortex beams [J]. Optics Express, 2012, 20(12): 13302-13310.

    [99] Qiu S, Ren Y. Observation of the rotational Doppler shift of the ring Airy Gaussian vortex beam [J]. Optics Communications, 2021, 490: 126900.

    [100] Zhang X, Zhao J, Li P, et al. Autofocusing of ring Airy beams embedded with off-axial vortex singularities [J]. Optics Express, 2020, 28(6): 7953-7960.

    [101] Davis J A, Cottrell D M, Zinn J M. Direct generation of abruptly focusing vortex beams using a 3/2 radial phase-only pattern [J]. Applied Optics, 2013, 52(9): 1888-1891.

    [102] Chen M, Huang S, Shao W, et al. Experimental study on the propagation characteristics of ring Airy Gaussian vortex beams [J]. Applied Physics B, 2017, 123(8): 1-7.

    [103] Zhi D, Tao R, Zhou P, et al. Propagation of ring Airy Gaussian beams with optical vortices through anisotropic non-Kolmogorov turbulence [J]. Optics Communications, 2017, 387: 157-165.

    [104] Chen B, Chen C D, Peng X, et al. Evolution of the ring Airy Gaussian beams with a spiral phase in the Kerr medium [J]. Journal of Optics, 2016, 18(5): 055504.

    [105] Liu X, Sun C, Deng D. Propagation properties and radiation force of circular Airy Gaussian vortex beams in strongly nonlocal nonlinear medium [J]. Chinese Physics B, 2020, 30(2): 024202.

    [106] Xu Y, Guo L, Cheng M, et al. Controlling abruptly autofocusing vortex beams to mitigate crosstalk and vortex splitting in free-space optical communication [J]. Optics Express, 2018, 26(10): 12605-12619.

    [107] Yan X, Guo L, Cheng M, et al. Free-space propagation of autofocusing Airy vortex beams with controllable intensity gradients [J]. Chinese Optics Letters, 2019, 17(4): 040101.

    [108] Liu C M, Liu J S, Niu L T, et al. Terahertz circular Airy vortex beams [J]. Scientific Reports, 2017, 7(1): 1-8.

    [109] Chen M, Huang S, Wei S, et al. Optical force and torque on a dielectric Rayleigh particle by a circular Airy vortex beam [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 208: 101-107.

    [110] Chen M, Huang S, Liu X, et al. Optical trapping and rotating of micro-particles using the circular Airy vortex beams [J]. Applied Physics B, 2019, 125(10): 1-6.

    [111] Izdebskaya Y V, Lu T H, Neshev D N, et al. Dynamics of three-Airy beams carrying optical vortices [J]. Applied Optics, 2014, 53(10): B248-B253.

    [112] Jin L, Li H, Zhao C, et al. Generation of Airy vortex beam arrays using computer-generated holography [J]. Journal of the Optical Society of America A, 2019, 36(7): 1215-1220.

    [113] Zhang X H, Wang F L, Bai L Y, et al. Three-Airy autofocusing beams [J]. Chinese Physics B, 2020, 29(6): 064204.

    [114] Suarez R A B, Neves A A R, Gesualdi M R R. Generation and characterization of an array of Airy-vortex beams [J]. Optics Communications, 2020, 458: 124846.

    [115] Cheng K, Jiao L, Zhong X. A comparison of far-field properties of radial noncanonical vortex airy beam arrays and radial noncanonical vortex Gaussian beam arrays [J]. Optics Communications, 2016, 367: 112-122.

    [116] Qian Y, Shi Y, Jin W, et al. Annular arrayed-Airy beams carrying vortex arrays [J]. Optics Express, 2019, 27(13): 18085-18093.

    [117] Jiang Y, Huang K, Lu X. Propagation dynamics of abruptly autofocusing Airy beams with optical vortices [J]. Optics Express, 2012, 20(17): 18579-18584.

    [118] Jiang Y, Zhao S, Yu W, et al. Abruptly autofocusing property of circular Airy vortex beams with different initial launch angles [J]. Journal of the Optical Society of America A, 2018, 35(6): 890-894.

    [119] Wang D, Jin L, Carmelo Rosales-Guzmán, et al. Generating arbitrary arrays of circular Airy Gaussian vortex beams with a single digital hologram [J]. Applied Physics B, 2021, 127(2): 1-5.

    PAN Jing, WANG Hao, FU Xing, LIU Qiang. Airy vortex and its derived light field[J]. Chinese Journal of Quantum Electronics, 2022, 39(1): 50
    Download Citation