• Laser & Optoelectronics Progress
  • Vol. 51, Issue 2, 20002 (2014)
Du Yanli*, Ma Fengying, Gong Qiaoxia, Guo Maotian, and Liang Erjun
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop51.020002 Cite this Article Set citation alerts
    Du Yanli, Ma Fengying, Gong Qiaoxia, Guo Maotian, Liang Erjun. Optical Microscopic Imaging Technology Based on Spatial Light Modulator[J]. Laser & Optoelectronics Progress, 2014, 51(2): 20002 Copy Citation Text show less
    References

    [1] D Axelrod. Cell-substrate contacts illuminated by total internal reflection fluorescence[J]. J Cell Biol, 1981, 89(1): 141-145.

    [2] Olga Gliko, Gaddum D Reddy, Bahman Anvari, et al.. Standing wave total internal reflection fluorescence microscopy to measure the size of nanostructures in living cells[J]. J Biomed Opt, 2006, 11(6): 0640131.

    [3] Peter Kner, Bryant B Chhun, Erie R Griffis, et al.. Super-resolution video microscopy of live cells by structured illumination[J]. Nature Methods, 2009, 6(5): 339-342.

    [4] A Rasmussen, V Deckert. New dimension in nanoimaging: breaking through the diffraction limit with scanning near-field optical microscopy[J]. Anal Bioanal Chem, 2005, 381(1): 165-172.

    [5] Eric Betzig, Jay K Trautman. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit[J]. Science, 1992, 257(5067): 189-195.

    [6] Reddick R C, Warmack R J, Chilcott, D W, et al.. Photon scanning tunneling microscopy[J]. Rev Sci Instrum, 1990, 61(12): 3669-3677.

    [7] J B Pendry. Negative refraction makes a perfect lens[J]. Phys Rev Lett, 2000, 85(18): 3966-3969.

    [8] Zhaowei Liu, Stephane Durant, Hyesog Lee, et al.. Far-field optical superlens[J]. Nano Lett, 2007, 7(2): 403-408.

    [9] Zhaowei Liu, Stephane Durant, Hyesog Lee, et al.. Experimental studies of far-field superlens for sub-diffractional optical imaging[J]. Opt Exp, 2007, 5(11): 6947-6954.

    [10] Klar T A, Jakobs S, Dyba M, et al.. Fluorescence microscopy with diffraction resolution limit broken by stimulated emission[J]. Proc Natl Acad Sci, 2000, 97(15): 8206-8210.

    [11] Mats G L Gustafsson. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proc Natl Acad Sci, 2005, 102(37): 13081-13086.

    [12] B Hein, K I Willig, S W Hell. Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell[J]. Proc Natl Acad Sci, 2008, 105(38): 14271-14276.

    [13] F Zernike. Diffraction theory of the knife-edge test and its improved form, the phase-contrast method[J]. Mon Not R Astron Soc, 1934, 94(5): 377-384.

    [14] F Zernike. Phase contrast, a new method for the microsopic observation of transparent objects[J]. Physica, 1942, 9(10): 686-698.

    [15] Jack G Dodd. Interferometry with Schlieren microscopy[J]. Appl Opt, 1977, 16(2): 470-472.

    [16] M Arnison, K Larkin, C Sheppard, et al.. Linear phase imaging using differential interference contrast microscopy[J]. J Microsc, 2004, 214(Pt1): 7-12.

    [17] M Schmitt, B Dietzek, G Hermann, et al.. Femtosecond time-resolved spectroscopy on biological photoreceptor chromophores[J]. Laser & Photon Rev, 2007, 1(1): 57-78.

    [18] M Heilemann, P Dedecker, J Hofkens, et al.. Photoswitches: key molecules for subdiffraction-resolution fluorescence imaging and molecular quantification[J]. Laser & Photon Rev, 2009, 3(1-2): 180-202.

    [19] M Hacker, G Stobrawa, R Sauerbrey, et al.. Micromirror SLM for femtosecond pulse shaping in the ultraviolet[J ]. Appl Phys B, 2003, 76(6): 711-714.

    [20] Yu Xiaochen, Hu Jiasheng, Wang Lianbao. Laser beam shaping based on liquid-crystal spatial light modulator[J]. Acta Optica Sinica, 2012, 32(5): 0514001.

    [21] Qiu Jisi, Fan Zhongwei, Tang Xiongxin. New adjustment method for Gamma curve of liquid crystal spatial light modulator and its effect on beam shaping[J]. Laser & Optoelectronics, 2012, 49(6): 061402.

    [22] E Frumker, Y Silberberg. Femtosecond pulse shaping using a two-dimensional liquid-crystal spatial light modulator[J]. Opt Lett, 2007, 32(11): 1384-1386.

    [23] G Sinclair, J Leach, P Jordan, et al.. Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping[J]. Opt Express, 2004, 12(8): 1665-1670.

    [24] G M Hagen, W Caarls, M Thomas, et al.. Biological applications of an LCOS-based programmable array microscope (PAM)[C]. SPIE, 2007, 6441: 64410S.

    [25] K Leonhardt, U Droste, H J Tiziani. Microshape and rough-surface analysis by fringe projection[J]. Appl Opt, 1994, 33(31): 7477-7488.

    [26] L Hirvonen, K Wicker, O Mandula, et al.. Structured illumination microscopy of a living cell[J]. Eur Biophys J, 2009, 38(6): 807-812.

    [27] S Monneret, M Rauzi, P F Lenne. Highly flexible whole-field sectioning microscope with liquid-crystal light modulator[J]. J Opt A: Pure Appl Opt, 2006, 8(7): S461-S466.

    [28] R Fiolka, M Beck, A Stemmer. Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator[J]. Opt Lett, 2008, 33(14): 1629-1631.

    [29] J Y Lin, R P Huang, P S Tsai, et al.. Wide-field super-resolution optical sectioning microscopy using a single spatial light modulator[J]. J Opt A: Pure Appl Opt, 2009, 11(1): 015301.

    [30] C Maurer, S Bernet, M Ritsch-Marte. Refining common path interferometry with a spiral-phase Fourier filter[J]. J Opt A: Pure Appl Opt, 2009, 11(8): 094023.

    [31] S Furhapter, A Jesacher, S Bernet, et al.. Spiral phase contrast imaging in microscopy[J]. Opt Express, 2005, 13(3): 689-694.

    [32] Ruth Steiger, Stefan Bernet, Monika Ritsch-Marte. SLM-based off-axis Fourier filtering in microscopy with white light illumination[J]. Opt Express, 2012, 20(14): 15377-15384.

    [33] Timothy J McIntyre, C Maurer, S Bernet, et al.. Differential interference contrast imaging using a spatial light modulator[J]. Opt Lett, 2009, 34(19): 2988-2990.

    [34] T J McIntyre, C Maurer, S Fassl, et al.. Quantitative SLM-based differential interference contrast imaging[J]. Opt Express, 2010, 18(13): 14063-14078.

    [35] L Allen, M W Beijersbergen, R J C Spreeuw, et al.. Orbital angular momentum of light and the transformation of Laguerre-Gaussian lasermodes[J]. Phys Rev A, 1992, 45(11): 8185-8189.

    [36] Jeffrey A Davis, Dylan E McNamara, Don M Cottrell, et al.. Image processing with the radial Hilbert transform: theory and experiments[J]. Opt Lett, 2000, 25(2): 99-101.

    [37] Severin Fürhapter, Alexander Jesacher, Stefan Bernet, et al.. Spiral phase contrast imaging in microscopy[J]. Opt Express, 2005, 13(3): 689-694.

    [38] A M Blackburn, J C Loudon. Vortex beam production and contrast enhancement from a magnetic spiral phase plate[J]. Ultramicroscopy, 2014, 136: 127-143.

    [39] Alexander Jesacher, Severin Furhapter, Stefan Bernet, et al.. Shadow effects in spiral phase contrast microscopy[J]. Phys Rev Lett, 2005, 94(23): 233902.

    [40] Christian Maurer, Alexander Jesacher, Stefan Bernet, et al.. What spatial light modulators can do for optical microscopy[J]. Laser & Photon Rev, 2011, 5(1): 81-101.

    [41] A Barty, K Nugent, D Paganin, et al.. Quantitative optical phase microscopy[J]. Opt Lett, 1998, 23(11): 817-819.

    [42] K R Lee, K Kim, J Jung, et al.. Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications[J]. Sensors, 2013, 13(4): 4170-4191.

    [43] I Iglesias, F Vargas-Martin. Quantitative phase microscopy of transparent samples using a liquid crystal display[J]. J Biomed Opt, 2013, 18(2): 026015.

    [44] P Ferraro, D Alferi, S D Nicola, et al.. Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction[J]. Opt Lett, 2006, 31(10): 1405-1407.

    [45] P Marquet, B Rappaz, P J Magistretti, et al.. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy[J]. Opt Lett, 2005, 30(5): 468-470.

    [46] A Y M Ng, C W See, M G Somekh. Quantitative optical microscope with enhanced resolution using a pixelated liquid crystal spatial light modulator[J]. J Microsc, 2004, 214(Pt3): 334-340.

    [47] Ma Lihong, Wang Hui, Jin Hongzhen, et al.. Experimental study on quantitative phase imaging by digital holographic microscopy[J]. Chinese J Lasers, 2012, 39(3): 0309002.

    [48] M Baranek, Z Bouchal. Rotating vortex imaging implemented by a quantized spiral phase modulation[J]. J Europ Opt Soc Rap Public, 2013, 8: 13017.

    [49] Ruth Steiger, Stefan Bernet, Monika Ritsch-Marte. Mapping of phase singularities with spiral phase contrast microscopy[J]. Opt Express, 2013, 21(14): 16282-16289.

    [50] Marcel A Lauterbach, Marc Guillon1, Asma Soltani, et al.. STED microscope with spiral phase contrast[J]. Scientific Reports, 2013, 3: 2050.

    [51] M P Lee, G M Gibson, R Bowman, et al.. A multi-modal stereo microscope based on a spatial light modulator[J]. Opt Express, 2013, 21(14): 16541-16551.

    [52] C Maurer, A Jesacher, S Bernet, et al.. Phase contrast microscopy with full numerical aperture illumination[J]. Opt Express, 2008, 16(24): 19821-19829.

    CLP Journals

    [1] Xu Hao, Zhang Yunhai, Zhang Xin, Huang Wei. Field of View-Extended Light Sheet Microscope Based on Wavefront Phase Modulation[J]. Acta Optica Sinica, 2016, 36(8): 818001

    [2] Yang Xufeng, Zhang Wenbin, Xie Yilin, Zhang Minmin, Tu Biao, Yang Xuekai, Ma Fengying, Gong Qiaoxia, Du Yanli. Incoherent On-Axis Digital Holographic Telescope System[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120902

    [3] Lin Fei, Zhang Wenwen, Fan Yao, Zuo Chao, Chen Qian. Theory and Systematic Design of Rheinberg Illumination Microscopy Based on Programmable LCD[J]. Acta Optica Sinica, 2016, 36(8): 818002

    [4] Huang Huiling, Chen Ziyang, Sun Cunzhi, Pu Jixiong. Focusing Laser Beams through Opaque Scattering Media[J]. Chinese Journal of Lasers, 2015, 42(6): 602004

    [5] Wu Meirui, Yang Xibin, Xiong Daxi, Li Hui, Wu Xiaodong. Structured Illumination Fluorescence Microscopy: Diffraction-Limit Breaking Principle and Application in Life Science[J]. Laser & Optoelectronics Progress, 2015, 52(1): 10003

    Du Yanli, Ma Fengying, Gong Qiaoxia, Guo Maotian, Liang Erjun. Optical Microscopic Imaging Technology Based on Spatial Light Modulator[J]. Laser & Optoelectronics Progress, 2014, 51(2): 20002
    Download Citation