Qinglan Wang, Haiyang Quan, Song Hu, Junbo Liu, Xi Hou. Review of absolute measurement of wavefront aberration in lithography objective[J]. Opto-Electronic Engineering, 2023, 50(5): 220001

Search by keywords or author
- Opto-Electronic Engineering
- Vol. 50, Issue 5, 220001 (2023)

Fig. 1. Wave aberration detection method
![Principle of Twyman-Green interferometer detection lithography objective[34]](/richHtml/gdgc/2023/50/5/220001/4_220001-2.jpg)
Fig. 2. Principle of Twyman-Green interferometer detection lithography objective[34]
![The principle of Fizeau interferometer detection lithography objective[35]](/Images/icon/loading.gif)
Fig. 3. The principle of Fizeau interferometer detection lithography objective[35]
![Schematic diagram of the principle of Shack-Hartmann wavefront sensing technology[38]](/Images/icon/loading.gif)
Fig. 4. Schematic diagram of the principle of Shack-Hartmann wavefront sensing technology[38]
![Schematic diagram of the principle of Shack-Hartmann wavefront sensing technology[39]](/Images/icon/loading.gif)
Fig. 5. Schematic diagram of the principle of Shack-Hartmann wavefront sensing technology[39]
![Schematic diagram of transverse shear interferometry[41]](/Images/icon/loading.gif)
Fig. 6. Schematic diagram of transverse shear interferometry[41]
![ILIAS technology based on Ronchi shear interference principle[42]](/Images/icon/loading.gif)
Fig. 7. ILIAS technology based on Ronchi shear interference principle[42]
![Phase-shifted point diffraction interferometer structure[45]](/Images/icon/loading.gif)
Fig. 8. Phase-shifted point diffraction interferometer structure[45]
![i-PMI technology based on the principle of line diffraction interference[7]](/Images/icon/loading.gif)
Fig. 9. i-PMI technology based on the principle of line diffraction interference[7]

Fig. 10. Absolute detection method
![Schematic diagram of classic three-plane combination measurement[49]](/Images/icon/loading.gif)
Fig. 11. Schematic diagram of classic three-plane combination measurement[49]
![Schematic diagram of absolute detection of double spheres based on three positions[52]](/Images/icon/loading.gif)
Fig. 12. Schematic diagram of absolute detection of double spheres based on three positions[52]
![Schematic diagram of rotation and translation method[60]](/Images/icon/loading.gif)
Fig. 13. Schematic diagram of rotation and translation method[60]
![Schematic diagram of the principle of rotating average method[70]](/Images/icon/loading.gif)
Fig. 14. Schematic diagram of the principle of rotating average method[70]
![Schematic diagram of the principle of random ball method[72]](/Images/icon/loading.gif)
Fig. 15. Schematic diagram of the principle of random ball method[72]

Fig. 16. Wavefront aberration of lithography objective absolute detection technology
![Schematic diagram of Fizeau interferometer measurement[73]](/Images/icon/loading.gif)
Fig. 17. Schematic diagram of Fizeau interferometer measurement[73]
![Schematic diagram of translation and subtraction[73]](/Images/icon/loading.gif)
Fig. 18. Schematic diagram of translation and subtraction[73]
![Cat’s-eye test configuration of spherical interferometer[74]](/Images/icon/loading.gif)
Fig. 19. Cat’s-eye test configuration of spherical interferometer[74]
![Wavefront aberration measurement of the objective lens using a plane mirror[75]. (a) Without tilt; (b) With tilt angle ∆θ.](/Images/icon/loading.gif)
Fig. 20. Wavefront aberration measurement of the objective lens using a plane mirror[75]. (a) Without tilt; (b) With tilt angle ∆θ.
![Schematic diagram of absolute detection principle based on random sphere method[76]](/Images/icon/loading.gif)
Fig. 21. Schematic diagram of absolute detection principle based on random sphere method[76]
![Principle of self-calibration of Shack-Hartmann wavefront measurement[78]](/Images/icon/loading.gif)
Fig. 22. Principle of self-calibration of Shack-Hartmann wavefront measurement[78]
![Classical structure of grating transverse shearing interferometer[80]](/Images/icon/loading.gif)
Fig. 23. Classical structure of grating transverse shearing interferometer[80]
![Schematic diagram of Talbot order method[93]](/Images/icon/loading.gif)
Fig. 24. Schematic diagram of Talbot order method[93]
![Schematic diagram of system error calibration by Talbot number method[93]](/Images/icon/loading.gif)
Fig. 25. Schematic diagram of system error calibration by Talbot number method[93]
![Schematic diagram of calibration mask method[93]](/Images/icon/loading.gif)
Fig. 26. Schematic diagram of calibration mask method[93]
![Experimental results of three calibration methods[93]](/Images/icon/loading.gif)
Fig. 27. Experimental results of three calibration methods[93]
![Absolute detection based on spot diffraction[94]](/Images/icon/loading.gif)
Fig. 28. Absolute detection based on spot diffraction[94]
![System error calibration of PS/PDI detection by rotating grating method[95]](/Images/icon/loading.gif)
Fig. 29. System error calibration of PS/PDI detection by rotating grating method[95]
![Absolute detection based on optical fiber point diffraction measurement technology[99]](/Images/icon/loading.gif)
Fig. 30. Absolute detection based on optical fiber point diffraction measurement technology[99]
|
Table 1. Objective lens specific parameters
|
Table 2. Relative RMS error of different objective lenses test results
|
Table 3. Detection accuracy of different rotation angles
|
Table 4. Comparison of absolute detection of wave aberration of four different lithography objectives

Set citation alerts for the article
Please enter your email address