• Chinese Journal of Lasers
  • Vol. 50, Issue 4, 0402001 (2023)
Hao Zhang1、2、3, Yaqing Hou1、2, Xuandong Wang1、2, and Hang Su2、*
Author Affiliations
  • 1Central Iron & Steel Research Institute, Beijing 100081, China
  • 2Material Digital R and D Center, China Iron & Steel Research Institute Group, Beijing 100081, China
  • 3ADRAYN Technology Co., Ltd., Chongqing 400050, China
  • show less
    DOI: 10.3788/CJL220642 Cite this Article Set citation alerts
    Hao Zhang, Yaqing Hou, Xuandong Wang, Hang Su. In-Situ Alloying of 304L Stainless Steel by Laser Powder Bed Fusion[J]. Chinese Journal of Lasers, 2023, 50(4): 0402001 Copy Citation Text show less
    References

    [1] Gu D D, Zhang H M, Chen H Y et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 47, 0500002(2020).

    [2] Zou T C, Zhu H, Chen M Y et al. Microstructure and tensile properties of SiC reinforced aluminum matrix composite prepared by selective laser melting[J]. Chinese Journal of Lasers, 48, 1002123(2021).

    [3] Hao Y B, Zhao K, Huang Y L et al. Microstructures and mechanical properties of doubled annealed laser melting deposited TC11 titanium alloy[J]. Chinese Journal of Lasers, 48, 2202001(2021).

    [4] Hu Z H, Song C H, Liu L Q et al. Research progress of selective laser melting of nitinol[J]. Chinese Journal of Lasers, 47, 1202005(2020).

    [5] Chen Y Y, Xiao Z Y, Li S K et al. Research progress on the preparation methods of metal powder for 3D printing[J]. Powder Metallurgy Industry, 28, 56-61(2018).

    [6] Chen Y Y, Xiao Z Y, Zou H P et al. Preparation and characterization of fine 316L stainless steel powders prepared by gas atomization[M]. Han Y F. High performance structural materials, 25-34(2018).

    [7] Chen P, Yang C, Li S et al. In-situ alloyed, oxide-dispersion-strengthened CoCrFeMnNi high entropy alloy fabricated via laser powder bed fusion[J]. Materials & Design, 194, 108966(2020).

    [8] Ewald S, Kies F, Hermsen S et al. Rapid alloy development of extremely high-alloyed metals using powder blends in laser powder bed fusion[J]. Materials, 12, 1706(2019).

    [9] Polozov I, Sufiiarov V, Popovich A et al. Synthesis of Ti-5Al, Ti-6Al-7Nb, and Ti-22Al-25Nb alloys from elemental powders using powder-bed fusion additive manufacturing[J]. Journal of Alloys and Compounds, 763, 436-445(2018).

    [10] Wang J C, Liu Y J, Liang S X et al. Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder[J]. Journal of Materials Science & Technology, 105, 1-16(2022).

    [11] Wang H, Luo H L, Chen J Q et al. Cost-affordable, biomedical Ti-5Fe alloy developed using elemental powders and laser in situ alloying additive manufacturing[J]. Materials Characterization, 182, 111526(2021).

    [12] Xu J Q, Zhou Q, Kong J et al. Solidification behavior and microstructure of Ti-(37-52) at% Al alloys synthesized in situ via dual-wire electron beam freeform fabrication[J]. Additive Manufacturing, 46, 102113(2021).

    [13] Kang N, Coddet P, Dembinski L et al. Microstructure and strength analysis of eutectic Al-Si alloy in situ manufactured using selective laser melting from elemental powder mixture[J]. Journal of Alloys and Compounds, 691, 316-322(2017).

    [14] Bosio F, Fino P, Manfredi D et al. Strengthening strategies for an Al alloy processed by in situ alloying during laser powder bed fusion[J]. Materials & Design, 212, 110247(2021).

    [15] Wang J, Wang Y C, Su Y T et al. Evaluation of in situ alloyed Inconel 625 from elemental powders by laser directed energy deposition[J]. Materials Science and Engineering: A, 830, 142296(2022).

    [16] Li C Q, Hou Y Q, Su H et al. Diffusion dynamic analysis on selective laser melting process of Fe/Ni powder[J]. Materials Reports, 34, 370-374(2020).

    [17] Zafari A, Xia K. Laser powder bed fusion of ultrahigh strength Fe-Cu alloys using elemental powders[J]. Additive Manufacturing, 47, 102270(2021).

    [18] Zafari A, Xia K. Nano/ultrafine grained immiscible Fe-Cu alloy with ultrahigh strength produced by selective laser melting[J]. Materials Research Letters, 9, 247-254(2021).

    [19] Hou Y Q, Su H, Zhang H et al. Fabricating homogeneous FeCoCrNi high-entropy alloys via SLM in situ alloying[J]. Metals, 11, 942(2021).

    [20] Chen P, Li S, Zhou Y H et al. Fabricating CoCrFeMnNi high entropy alloy via selective laser melting in situ alloying[J]. Journal of Materials Science & Technology, 43, 40-43(2020).

    [21] Kim Y K, Yu J H, Kim H S et al. In-situ carbide-reinforced CoCrFeMnNi high-entropy alloy matrix nanocomposites manufactured by selective laser melting: carbon content effects on microstructure, mechanical properties, and deformation mechanism[J]. Composites Part B: Engineering, 210, 108638(2021).

    [22] Gao J B, Jin Y T, Fan Y Q et al. Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in situ alloying[J]. Journal of Materials Science & Technology, 102, 159-165(2022).

    [23] Guo Q L, Zhao C, Qu M L et al. In-situ full-field mapping of melt flow dynamics in laser metal additive manufacturing[J]. Additive Manufacturing, 31, 100939(2020).

    [24] Ly S, Rubenchik A M, Khairallah S A et al. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing[J]. Scientific Reports, 7, 4085(2017).

    [25] Martin A A, Calta N P, Khairallah S A et al. Dynamics of pore formation during laser powder bed fusion additive manufacturing[J]. Nature Communications, 10, 1987(2019).

    [26] Yao L M, Huang S, Ramamurty U et al. On the formation of “Fish-scale” morphology with curved grain interfacial microstructures during selective laser melting of dissimilar alloys[J]. Acta Materialia, 220, 117331(2021).

    [27] Li Y L, Gu D D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder[J]. Materials & Design, 63, 856-867(2014).

    [28] Montero-Sistiaga M L, Godino-Martinez M, Boschmans K et al. Microstructure evolution of 316L produced by HP-SLM (high power selective laser melting)[J]. Additive Manufacturing, 23, 402-410(2018).

    [29] Zhang T L, Huang Z H, Yang T et al. In situ design of advanced titanium alloy with concentration modulations by additive manufacturing[J]. Science, 374, 478-482(2021).

    [30] Xie M, Zhou S F, Zhao S Z et al. In-situ Fe2P reinforced bulk Cu-Fe immiscible alloy with nanotwinned Cu produced by selective laser melting[J]. Journal of Alloys and Compounds, 838, 155592(2020).

    [31] Wei C, Gu H, Li Q et al. Understanding of process and material behaviours in additive manufacturing of Invar36/Cu10Sn multiple material components via laser-based powder bed fusion[J]. Additive Manufacturing, 37, 101683(2021).

    [32] Hou J, Chen W, Chen Z E et al. Microstructure, tensile properties and mechanical anisotropy of selective laser melted 304L stainless steel[J]. Journal of Materials Science & Technology, 48, 63-71(2020).

    [33] Hou Y Q, Su H, Zhang H et al. Design of high throughput preparation system and sample preparation based on selective laser melting[J]. Metallic Functional Materials, 28, 50-58(2021).

    Hao Zhang, Yaqing Hou, Xuandong Wang, Hang Su. In-Situ Alloying of 304L Stainless Steel by Laser Powder Bed Fusion[J]. Chinese Journal of Lasers, 2023, 50(4): 0402001
    Download Citation