• Laser & Optoelectronics Progress
  • Vol. 55, Issue 3, 030005 (2018)
Zhenglong Lei, Ze Tian, and Yanbin Chen*
Author Affiliations
  • State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
  • show less
    DOI: 10.3788/LOP55.030005 Cite this Article Set citation alerts
    Zhenglong Lei, Ze Tian, Yanbin Chen. Laser Cleaning Technology in Industrial Fields[J]. Laser & Optoelectronics Progress, 2018, 55(3): 030005 Copy Citation Text show less
    Process diagram of laser ablation cleaning
    Fig. 1. Process diagram of laser ablation cleaning
    Process diagram of liquid film assisted laser cleaning
    Fig. 2. Process diagram of liquid film assisted laser cleaning
    Process diagram of laser shockwave cleaning[14]
    Fig. 3. Process diagram of laser shockwave cleaning[14]
    Process diagrams of single pot laser ablation cleaning of Al-Si coating. (a) Energy coupling; (b) heat conduction; (c) plasma shielding; (d) material expulsion[15]
    Fig. 4. Process diagrams of single pot laser ablation cleaning of Al-Si coating. (a) Energy coupling; (b) heat conduction; (c) plasma shielding; (d) material expulsion[15]
    Total emission intensity as a function of depth of processing[29]
    Fig. 5. Total emission intensity as a function of depth of processing[29]
    X-ray tomography of material surface. (a) Before laser cleaning; (b) after laser cleaning[32]
    Fig. 6. X-ray tomography of material surface. (a) Before laser cleaning; (b) after laser cleaning[32]
    (a) Cross-sectional morphology of material after 900 pulses of laser irradiation with a laser energy density of 6.1 J·cm-2; (b) structural diagram of cross section of sample after laser irradiation[36]
    Fig. 7. (a) Cross-sectional morphology of material after 900 pulses of laser irradiation with a laser energy density of 6.1 J·cm-2; (b) structural diagram of cross section of sample after laser irradiation[36]
    X-ray photos of weld. (a) Joint without any cleaning before welding; (b) joint with laser cleaning before welding[37]
    Fig. 8. X-ray photos of weld. (a) Joint without any cleaning before welding; (b) joint with laser cleaning before welding[37]
    Cross-sectional morphologies of material after 0.35 mJ laser treatment. (a) Carbon fiber at center of laser trajectory; (b) carbon fiber at border of laser trajectory[42]
    Fig. 9. Cross-sectional morphologies of material after 0.35 mJ laser treatment. (a) Carbon fiber at center of laser trajectory; (b) carbon fiber at border of laser trajectory[42]
    CFRP surface morphologies after excimer laser cleaning with energy density of 800 mJ·cm-2. (a) No pulse; (b) two pulses; (c) six pulses[43]
    Fig. 10. CFRP surface morphologies after excimer laser cleaning with energy density of 800 mJ·cm-2. (a) No pulse; (b) two pulses; (c) six pulses[43]
    AFM image of tungsten wire across oxidized and laser cleaning areas[53]
    Fig. 11. AFM image of tungsten wire across oxidized and laser cleaning areas[53]
    SubstrateCleaning materialLaserYear
    HPF steelCoatingPulsed fiber laser (1064 nm)2017[15]
    Nd∶YAG laser (1064 nm)2016[16-17]
    Stainless steelRustPulsed green laser (532 nm)2016[18]
    CoatingPulsed fiber laser (1064 nm)2015[19]
    Oil, lubricantNd∶YAG laser (1064 nm)2012[20]
    Carbon steelPaintPulsed fiber laser (1064 nm)2015[21]
    RustPulsed fiber laser (1064 nm)2014[22-25]
    Nd∶YAG laser (1064 nm)2013[26]
    Hot rolled steelRustPulsed fiber laser (1064 nm)2016[27-28]
    PaintPulsed fiber laser (1064 nm)2017[29]2015[30]
    Aluminum alloyParticle, oxide filmNd∶YAG laser (532 nm)2016[31]
    Coating, lubricantNd∶YAG laser (1064 nm)2014[32]
    Surface of substrateNd∶YAG laser (1064 nm)2016[33]
    Pulsed fiber laser (1064 nm)2015[34]
    Titanium alloyCoatingFemtosecond laser (800 nm)2013[35]
    Excimer laser (248 nm)2012[12,36]
    Oxide filmPulsed fiber laser (1064 nm)2010[37]
    GlassFilmNd∶YAG laser (1064 nm, 532 nm)2013[38]
    Particle, oilNd∶YAG laser (1064 nm, 532 nm)2014[39]2011[40]2012[41]
    CO2 laser (10.6 μm)2012[41]
    CFRPContaminants, epoxy resinFemtosecond laser (1024 nm)2017[42]
    Excimer laser (308 nm)2016[43]
    Pulsed CO2 laser (10.6 μm)2016[44]
    UV laser (308 nm), NIR laser (1064 nm)2013[45]
    PaintTEA-CO2 laser (10.6 μm)2007[46]
    HIPSParticleNd∶YAG laser (1064 nm)2014[47]
    Si waferParticleXeCl excimer laser (308 nm)2009[48]
    Nd∶YAG laser (1064 nm)2009[14,49]2007[50]2005[51]
    Nickel-based superalloy AM1Surface of substrateDiode-pumped solid-state laser (532 nm)2016[52]
    Tungsten ribbonOxide filmNd∶YAG laser (1064, 532, 355 nm)2014[53]
    Brass ringsCoatingPulsed fiber laser (1064 nm)2014[54]
    Table 1. Research summary of domestic and overseas laser cleaning in recent decade
    Zhenglong Lei, Ze Tian, Yanbin Chen. Laser Cleaning Technology in Industrial Fields[J]. Laser & Optoelectronics Progress, 2018, 55(3): 030005
    Download Citation