• Photonic Sensors
  • Vol. 1, Issue 3, 234 (2011)
Cheng-Shane CHU1, Yu-Lung LO2、*, and Ti-Wen SUNG2
Author Affiliations
  • 1Department of Mechanical Engineering, Ming Chi University of Technology, Taishan District, New Taipei City, Taiwan, China
  • 2Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan, China
  • show less
    DOI: 10.1007/s13320-011-0025-4 Cite this Article
    Cheng-Shane CHU, Yu-Lung LO, Ti-Wen SUNG. Review on Recent Developments of Fluorescent Oxygen and Carbon Dioxide Optical Fiber Sensors[J]. Photonic Sensors, 2011, 1(3): 234 Copy Citation Text show less
    References

    [1] J. N. Demas, B. A. Degraff, and P. B. Coleman, “Oxygen sensors based on luminescence quenching,” Anal. Chem., vol. 71, no. 23, pp. 793A-800A, 1999.

    [2] K. Tsukada, S. Sakai, K. Hase, and H. Minamitani, “Development of catheter type optical oxygen sensor and applications to bioinstrumentation,” Biosens. Bioelectron., vol. 18, no. 12, pp. 1439-1445, 2003.

    [3] E. VanderDonckt, B. Camerman, R. Herne, and R. Vandeloise, “Fiber-optic oxygen sensor based on luminescence quenching of a Pt(II) complex embedded in polymer matrices,” Sens. Actuators B Chem., vol. 32, no. 3, pp. 121-127, 1996.

    [4] P. Douglas and K. Eaton, “Response characteristics of thin film oxygen sensors, Pt and Pd octaethylporphyrins in polymer films,” Sens. Actuators B Chem., vol. 82, no. 2-3 , pp. 200-208, 2002.

    [5] C. McDonagh, B. D. MacCraith, and A. K. McEcoy, “Tailoring of sol-gel films for optical sensing of oxygen in gas and aqueous phase,” Anal. Chem., vol. 70, no. 1, pp. 45-50, 1998.

    [6] Y. Tang, E. C. Tehan, Z. Tao, and F. V. “Bright, sol-gel-derived sensor materials that yield linear calibration plots, high sensitivity, and long-term stability,” Anal. Chem., vol. 75, no. 10, pp. 2407-2413, 2003.

    [7] R. M. Bukowski, R. Ciriminna, M. Pagliaro, and F. V. Bright, “High-performance quenchometric oxygen sensors based on fluorinated xerogels doped with [Ru(dpp)(3)](2+),” Anal. Chem., vol. 77, no. 8, pp. 2670-2672, 2005.

    [8] T. J. Manuccia and J. G. Eden, “Infrared optical measurement of blood gas concentrations and fiber optic catheter,” U.S., Patent 4,509,522, 1985.

    [9] B. H. Weigl and O. S. Wolfbeis, “Capillary optical sensors,” Anal. Chem., vol. 66, no. 20, pp. 3323-3327, 1994.

    [10] D. A. Nivens, M. V. Schiza, and S. M. Angel, “Multilayer sol-gel membranes for optical sensing applications: single layer pH and dual layer CO2 and NH3 sensors,” Talanta, vol. 58, no. 3, pp. 543-550, 2002.

    [11] A. Mills and Q. Chang, “Fluorescence plastic thin-film sensor for carbon dioxide,” Analyst, vol. 118, no. 7, pp. 839-843, 1993.

    [12] C. von Bultzingslowen, A. K. McEvoy, C. McDonagh, and B. D. MacCraith, “Lifetime-based optical sensor for high-level pCO2 detection employing fluorescence resonance energy transfer,” Anal. Chim. Acta, vol. 480, no. 2, pp. 275-283, 2003.

    [13] C. von Bultzingslowen, A. K. McEvoy, C. McDonagh, B. D. MacCraith, I. Kliment, C. Krause, and O. S. Wolfbeis, “Sol-gel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology,” Analyst, vol. 127, no. 11, pp. 1478-1483, 2002.

    [14] X. He and G. A. Rechnitz, “Linear response function for fluorescence-based fiber-optic CO2 sensors,” Anal. Chem., vol. 67, no. 13, pp. 2264-2268, 1995.

    [15] C. Malins and B. D. MacCraith, “Dye-doped organically modified silica glass for fluorescence based carbon dioxide gas detection,” Analyst, vol. 123, no.11, pp. 2373-2376, 1998.

    [16] T. S. Yeh, C. S. Chu, and Y. L. Lo, “Highly sensitive optical fiber oxygen sensor using Pt(II) complex embedded in sol-gel matrices,” Sens. Actuators B Chem., vol. 119, no. 2, pp. 701-707, 2006.

    [17] C. S. Chu and Y. L. Lo, “High-performance fiber-optic oxygen sensors based on fluorinated xerogels doped with Pt(II) complexes,” Sens. Actuators B Chem., vol. 124, no. 2, pp. 376-382, 2007.

    [18] Y. Tang, E. C. Tehan, Z. Tao, and F. V. Bright, “Sol-gel-derived sensor materials that yield linear calibration plots, high sensitivity, and long-term stability,” Anal. Chem., vol. 75, no. 10, pp. 2407-2413, 2003.

    [19] K. Kalyanasundaram, “Photophysics, photochemistry and solar energy conversion with tris(bipyridyl) ruthenium(II) and its analogues,” Coord. Chem. Rev., vol. 46, no. 1-2, pp. 159-244, 1982.

    [20] C. S. Chu and Y. L. Lo, “Ratiometric fiber-optic oxygen sensors based on sol-gel matrix doped with metalloporphyrin and 7-amino-4-trifluoromethyl coumarin,” Sens. Actuators B Chem., vol. 134, no. 2, pp. 711-717, 2008.

    [21] X. Y. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar, and L. A. Sarnuelson, “Electrospun nanofibrous membranes for highly sensitive optical sensors,” Nano Lett., vol. 2, no. 11, pp. 1273-1275, 2002.

    [22] S. Santra, K. M. Wang, R. Tapec, and W. H. Tan, “Development of novel dye-doped silica nanoparticles for biomarker application,” J. Biomed. Opt., vol. 6, no. 2, pp. 160-166, 2001.

    [23] C. Barbe, J. Bartlett, L. G. kong, K. Finnie, H. Q. Lin, M. Larkin, S. Calleja, A. Bush, and G. Calleja, “Silica particles: a novel drug-delivery system,” Adv. Mater., vol. 16, no. 21, pp. 1959-1966, 2004.

    [24] B. H. Han, I. Manners, and M. A. Winnik, “Oxygen sensors based on mesoporous silica particles on layer-by-layer self-assembled films,” Chem. Mater., vol. 17, no. 12, pp. 3160-3171, 2005.

    [25] C. S. Chu, Y. L. Lo, and T. W. Sung, “Enhanced oxygen sensing properties of Pt(II) complex and dye entrapped core-shell nanoparticles embedded in sol-gel matrix,” Talanta, vol. 82, no. 3, pp. 1044-1051, 2005.

    [26] Y. Amao, T. Miyashita, and I. Okura, “Platinum tetrakis (pentafluorophenyl) porphyrin immobilized in polytrifluoroethylmethacrylate film as a photostable optical oxygen detection material,” J. Fluor. Chem., vol. 107, no. 1, pp. 101-106, 2001.

    [27] S. K. Lee and I. Okura, “Photostable optical oxygen sensing material: Platinum tetrakis (pentafluorophenyl) porphyrin immobilized in polystyrene,” Anal. Comm., vol. 34, no. 6, pp. 185-188, 1997.

    [28] B. J. Basu, “Optical oxygen sensing based on luminescence quenching of platinum porphyrin dyes doped in ormosil coatings,” Sens. Actuators B Chem., vol. 123, no. 1, pp. 568-577, 2007.

    [29] A. N. Watkins, B. R. Wenner, J. D. Jordan, W. Xu, J. N. Demas, and F. V. Bright, “Portable, low-cost, solid-state luminescence-based O2 sensor,” Appl. Spectrosc., vol. 52, no. 5, pp. 750-754, 1998.

    [30] C. S. Chu and Y. L. Lo, “Optical fiber dissolved oxygen sensor based on Pt(II) complex and core-shell silica nanoparticles incorporated with sol-gel matrix,” Sens. Actuators B Chem., vol. 151, no. 1, pp. 83-89, 2010.

    [31] R. N. Gillanders, M. C. Tedford, P. J. Crilly, and R. T. Bailey, “Thin film dissolved oxygen sensor based on platinum octaethylporphyrin encapsulated in an elastic fluorinated polymer,” Anal. Chim. Acta, vol. 502, no. 1, pp. 1-6, 2004.

    [32] R. N. Gillander, M. C. Tedford, P. J. Crilly, and R. T. Bailey, “A composite thin film optical sensor for dissolved oxygen in contaminated aqueous environments,” Anal. Chim. Acta, vol. 545, no. 2, pp. 189-195, 2005.

    [33] A. K. McEvoy, C. M. McDonagh, and B. D. MacCraith, “Dissolved oxygen sensor based on fluorescence quenching of oxygen-sensitive ruthenium complexes immobilized in sol-gel-derived porous silica coatings,” Analyst, vol. 121, no. 6, pp. 785-788, 1996.

    [34] X. Chen, Z. M. Zhong, Y. Q. Jiang, X. R. Wang, and K. Y. Wong, “Characterization of ormosil film for dissolved oxygen-sensing,” Sens. Actuators B Chem., vol. 124, no. 2, pp. 233-238, 2002.

    [35] Z. Y. Tao, E. C. Tehan, Y. Tang, and F. V. Bright, “Stable sensors with tunable sensitivities based on class II xerogels,” Anal. Chem., vol. 78, no. 6, pp. 1939-1945, 2006.

    [36] X. L. Xiong, D. Xiao, and M. M. F. Choi, “Dissolved oxygen sensor based on fluorescence quenching of oxygen sensitive ruthenium complex immobilized on silica-Ni-P composite coating,” Sens. Actuators B Chem., vol. 117, no. 1, pp. 172-176, 2006.

    [37] H. L. Pang, N. Y. Kwok, L. M. C. Chow, C. H. Yeung, K. Y. Wong, X. Chen, and X. R. Wang, “ORMOSIL oxygen sensors on polystyrene microplate for dissolved oxygen measurement,” Sens. Actuators B Chem., vol. 123, no. 1, pp. 120-126, 2007.

    [38] F. H. Chu, J. J. Yang, H. W. Cai, R. H. Qu, and Z. J. Fang, “Characterization of a dissolved oxygen sensor made of plastic optical fiber coated with ruthenium-incorporated solgel,” Appl. Optics, vol. 48, no. 2, pp. 338-342, 2009.

    [39] Y. L. Lo, C. S. Chu, J. P. Yur, and Y. C. Chang, “Temperature compensation of fluorescence intensity-based fiber-optic oxygen sensors using modified Stern-Volmer model,” Sens. Actuators B Chem., vol. 131, no. 2, pp. 479-488, 2008.

    [40] S. Nagl and O. S. Wolfbeis, “Optical multiple chemical sensing: status and current challenges,” Analyst, vol. 132, no. 6, pp. 507-511, 2007.

    [41] S. M. Borisov and O. S. Wolfbeis, “Temperature-sensitive europium(III) probes and their use for simultaneous luminescent sensing of temperature and oxygen,” Anal. Chem., vol. 78, no. 14, pp. 5094-5010, 2006.

    [42] C. S. Chu and Y. L. Lo, “A plastic optical fiber sensor for the dual sensing of temperature and oxygen,” IEEE Photon. Technol. Lett., vol. 20, no. 1, pp. 63-65, 2008.

    [43] P. Hartmann, W. Ziegler, G. Holst, and D. W. Lubbers, “Oxygen flux fluorescence lifetime imaging,” Sens. Actuators B Chem., vol. 38, no. 1, pp. 110-115, 1997.

    [44] G. Holst and O. Kohls, “A modular luminescence lifetime imaging system for mapping oxygen distribution in biological samples,” Sens. Actuators B Chem., vol. 51, no. 1-3, pp. 163-170, 1998.

    [45] G. Holst and B. Grumwald, “Luminescence lifetime imaging with transparent oxygen optodes,” Sens. Actuators B Chem., vol. 74, no. 1, pp. 78-90, 2001.

    [46] T. Vo-Dinh, Biomedical Photonics Handbook. Boca Raton: CRC Press, 2003.

    [47] C. S. Chu and Y. L. Lo, “2D full-field measurement of oxygen concentration based on the phase fluorometry technique that uses the four-frame integrating bucket method,” Sens. Actuators B Chem., vol. 147, no. 1, pp. 310-315, 2010.

    [48] T. J. Manuccia and J. G. Eden, “Infrared optical measurement of blood gas concentrations and fiber optic catheter,” U.S., Patent 4,509,522, 1985.

    [49] Y. Shimizu and N. Yamashita, “Solid electrolyte CO2 sensor using NASICON and perovskite-type oxide electrode,” Sens. Actuators B Chem., vol. 64, no. 1, pp. 102-106, 2004.

    [50] Y. Amao and N. Nakamura, “An optical sensor with the combination of colorimetric change of α-naphtholphthalein and internal reference luminescent dye for CO2 in water,” Sens. Actuators B Chem., vol. 107, no. 2, pp. 861-865, 2005.

    [51] B. H. Weigl and O. S. Wolfbeis, “New hydrophobic materials for optical carbon dioxide sensors based on ion-pairing,” Anal. Chim. Acta, vol. 302, no. 2, pp. 249-254, 1995.

    [52] O. S. Wolfbeis, B. Kovacs, K. Goswami, and S. M. Klainer, “Fiber-optic fluorescence carbon dioxide sensor for environmental monitoring,” Mikrochim. Acta, vol. 129, no. 3, pp. 181-188, 1998.

    [53] G. Neurauter, I. Klimant, and O. S. Wolfbeis, “Fiber-optic microsensor for high resolution pCO2 sensing in marine environment,” Fresenius J. Anal. Chem., vol. 366, no. 5, pp. 481-487, 2000.

    [54] K. Ertekin, I. Klimant, G. Neurauter, and O. S. Wolfbeis, “Characterization of a reservoir-type capillary optical microsensor for pCO2 measurements,” Talanta, vol. 59, no. 2, pp. 261-267, 2003.

    [55] Y. Amao and N. Nakamura, “Optical CO2 sensor with the combination of colorimetric change of α-naphtholphthalein and internal reference fluorescent porphyrin,” Sens. Actuators B Chem., vol. 100, no. 3, pp. 347-351, 2004.

    [56] C. S. Chu and Y. L. Lo, “Fiber-optic carbon dioxide sensor base on fluorinated xerogels doped with HPTS,” Sens. Actuators B Chem., vol. 129, no. 1, pp. 120-125, 2008.

    [57] C. S. Chu and Y. L. Lo, “Highly sensitive and linear optical fiber carbon dioxide sensor based on sol gel matrix doped with silica particles and HPTS,” Sens. Actuators B Chem., vol. 143, no. 1, pp. 205-210, 2009.

    [58] O. Oter, K. Ertekin, and S. Derinkuyu, “Ratiometric sensing of CO2 in ionic liquid modified ethyl cellulose matrix,” Talanta, vol. 76, no. 3, pp. 557-563, 2008.

    [59] O. S. Wolfbeis and L. J. Weis, “Fiber-optic fluorosensor for oxygen and carbon dioxide,” Anal. Chem., vol. 60, no. 19, pp. 2028-2030, 1988.

    [60] O. Oter, K. Ertekin, D. Topkaya, and S. Alp, “Emission-based optical carbon dioxide sensing with HPTS in green chemistry reagents: room-temperature ionic liquids,” Anal. Bioanal. Chem., vol. 386, no. 5, pp. 1225-1234, 2006.

    Cheng-Shane CHU, Yu-Lung LO, Ti-Wen SUNG. Review on Recent Developments of Fluorescent Oxygen and Carbon Dioxide Optical Fiber Sensors[J]. Photonic Sensors, 2011, 1(3): 234
    Download Citation