• Opto-Electronic Advances
  • Vol. 7, Issue 5, 230126 (2024)
Xiaohu Zhang1,†,*, Qinmiao Chen2,†, Dongliang Tang3..., Kaifeng Liu1, Haimo Zhang1, Lintong Shi1, Mengyao He1, Yongcai Guo1 and Shumin Xiao2,**|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of optoelectronic Technology and Systems of the Education Ministry of China, Chongqing University, Chongqing 400044, China
  • 2Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, China
  • 3Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
  • show less
    DOI: 10.29026/oea.2024.230126 Cite this Article
    Xiaohu Zhang, Qinmiao Chen, Dongliang Tang, Kaifeng Liu, Haimo Zhang, Lintong Shi, Mengyao He, Yongcai Guo, Shumin Xiao. Broadband high-efficiency dielectric metalenses based on quasi-continuous nanostrips[J]. Opto-Electronic Advances, 2024, 7(5): 230126 Copy Citation Text show less
    References

    [1] MK Chen, XY Liu, YN Sun, DP Tsai. Artificial intelligence in meta-optics. Chem Rev, 122, 15356-15413(2022).

    [2] MK Chen, XY Liu, YF Wu, JC Zhang, JQ Yuan et al. A meta-device for intelligent depth perception. Adv Mater, 35, 2107465(2023).

    [3] T Cao, M Lian, XY Chen, LB Mao, K Liu et al. Multi-cycle reconfigurable THz extraordinary optical transmission using chalcogenide metamaterials. Opto-Electron Sci, 1, 210010(2022).

    [4] S Krasikov, A Tranter, A Bogdanov, Y Kivshar. Intelligent metaphotonics empowered by machine learning. Opto-Electron Adv, 5, 210147(2022).

    [5] WT Chen, KY Yang, CM Wang, YW Huang, G Sun et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett, 14, 225-230(2014).

    [6] YX Zhang, MB Pu, JJ Jin, XJ Lu, YH Guo et al. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization. Opto-Electron Adv, 5, 220058(2022).

    [7] M Khorasaninejad, Z Shi, AY Zhu, WT Chen, V Sanjeev et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett, 17, 1819-1824(2017).

    [8] NF Yu, P Genevet, MA Kats, F Aieta, JP Tetienne et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [9] YJ Wang, QM Chen, WH Yang, ZH Ji, LM Jin et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat Commun, 12, 5560(2021).

    [10] C Zeng, H Lu, D Mao, YQ Du, H Hua et al. Graphene-empowered dynamic metasurfaces and metadevices. Opto-Electron Adv, 5, 200098(2022).

    [11] MX Zhao, MK Chen, ZP Zhuang, YW Zhang, A Chen et al. Phase characterisation of metalenses. Light:Sci Appl, 10, 52(2021).

    [12] JT Li, GC Wang, Z Yue, JY Liu, J Li et al. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization. Opto-Electron Adv, 5, 210062(2022).

    [13] H Gao, XH Fan, YX Wang, YC Liu, XG Wang et al. Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction. Opto-Electron Sci, 2, 220026(2023).

    [14] SM Wang, PC Wu, VC Su, YC Lai, MK Chen et al. A broadband achromatic metalens in the visible. Nat Nanotechnol, 13, 227-232(2018).

    [15] S Shrestha, AC Overvig, M Lu, A Stein, NF Yu. Broadband achromatic dielectric metalenses. Light:Sci Appl, 7, 85(2018).

    [16] H Markovich, II Shishkin, N Hendler, P Ginzburg. Optical manipulation along an optical axis with a polarization sensitive meta-lens. Nano Lett, 18, 5024-5029(2018).

    [17] WT Chen, AY Zhu, J Sisler, Z Bharwani, F Capasso. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat Commun, 10, 355(2019).

    [18] XZ Chen, LL Huang, H Mühlenbernd, GX Li, BF Bai et al. Dual-polarity plasmonic metalens for visible light. Nat Commun, 3, 1198(2012).

    [19] Z Li, T Zhang, YQ Wang, WJ Kong, J Zhang et al. Achromatic broadband super-resolution imaging by super-oscillatory metasurface. Laser Photon Rev, 12, 1800064(2018).

    [20] DL Tang, CT Wang, ZY Zhao, YQ Wang, MB Pu et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser Photon Rev, 9, 713-719(2015).

    [21] Q Zhang, FL Dong, HX Li, ZX Wang, GF Liang et al. High-numerical-aperture dielectric metalens for super-resolution focusing of oblique incident light. Adv Opt Mater, 8, 1901885(2020).

    [22] XG Luo, MB Pu, X Li, XL Ma. Broadband spin Hall effect of light in single nanoapertures. Light:Sci Appl, 6, e16276(2017).

    [23] MB Pu, X Li, XL Ma, YQ Wang, ZY Zhao et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv, 1, e1500396(2015).

    [24] ZW Li, LR Huang, K Lu, YL Sun, L Min. Continuous metasurface for high-performance anomalous reflection. Appl Phys Express, 7, 112001(2014).

    [25] ZY Li, E Palacios, S Butun, K Aydin. Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting. Nano Lett, 15, 1615-1621(2015).

    [26] DP Wang, Y Hwang, YM Dai, GY Si, SB Wei et al. Broadband high-efficiency chiral splitters and holograms from dielectric nanoarc metasurfaces. Small, 15, 1900483(2019).

    [27] F Zhang, MB Pu, X Li, XL Ma, YH Guo et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces. Adv Mater, 33, 2008157(2021).

    [28] Q He, SL Sun, SY Xiao, L Zhou. High-efficiency metasurfaces: principles, realizations, and applications. Adv Opt Mater, 6, 1800415(2018).

    [29] SW Tang, F Ding. High-efficiency focused optical vortex generation with geometric gap-surface Plasmon metalenses. Appl Phys Lett, 117, 011103(2020).

    [30] Z Alnakhli, RH Lin, CH Liao, AE Labban, XH Li. Reflective metalens with an enhanced off-axis focusing performance. Opt Express, 30, 34117-34128(2022).

    [31] JY Chen, FW Zhang, Q Li, JP Wu, LJ Wu. A high-efficiency dual-wavelength achromatic metalens based on Pancharatnam-Berry phase manipulation. Opt Express, 26, 34919-34927(2018).

    [32] WT Chen, AY Zhu, V Sanjeev, M Khorasaninejad, ZJ Shi et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol, 13, 220-226(2018).

    [33] B Groever, NA Rubin, JPB Mueller, RC Devlin, F Capasso. High-efficiency chiral meta-lens. Sci Rep, 8, 7240(2018).

    [34] SN Tian, HM Guo, JB Hu, SL Zhuang. Dielectric longitudinal bifocal metalens with adjustable intensity and high focusing efficiency. Opt Express, 27, 680-688(2019).

    [35] Y Lin, YG Dong, T Sun, YM Zhao, M Wang et al. High-efficiency optical sparse aperture metalens based on GaN nanobrick array. Adv Opt Mater, 10, 2102756(2022).

    [36] CY Fan, CP Lin, GDJ Su. Ultrawide-angle and high-efficiency metalens in hexagonal arrangement. Sci Rep, 10, 15677(2020).

    [37] YC Zhu, SY Liu, Y Chang, YX Wang, S Zhou et al. Broadband polarization-insensitive metalens with excellent achromaticity and high efficiency for the entire visible spectrum. Appl Phys Lett, 122, 201702(2023).

    [38] G Yoon, K Kim, SU Kim, S Han, H Lee et al. Printable nanocomposite metalens for high-contrast near-infrared imaging. ACS Nano, 15, 698-706(2021).

    [39] YC Zhu, GM Yuan, Y Chang, S Zhou, CF Wu et al. Ultra-broadband achromatic metalens with high performance for the entire visible and near-infrared spectrum. Results Phys, 50, 106591(2023).

    [40] P Sun, MD Zhang, FL Dong, LF Feng, WG Chu. Broadband achromatic polarization insensitive metalens over 950 nm bandwidth in the visible and near-infrared. Chin Opt Lett, 20, 013601(2022).

    [41] XH Zhang, GF Liang, DQ Feng, L Zhou, YC Guo. Ultra-broadband metasurface holography via quasi-continuous nano-slits. J Phys D:Appl Phys, 53, 104002(2020).

    [42] YH Guo, MB Pu, ZY Zhao, YQ Wang, JJ Jin et al. Merging geometric phase and Plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photonics, 3, 2022-2029(2016).

    [43] XH Zhang, DL Tang, L Zhou, GF Liang, DQ Feng et al. A quasi-continuous all-dielectric metasurface for broadband and high-efficiency holographic images. J Phys D:Appl Phys, 53, 465105(2020).

    [44] LL Huang, XZ Chen, H Mühlenbernd, H Zhang, SM Chen et al. Three-dimensional optical holography using a plasmonic metasurface. Nat Commun, 4, 2808(2013).

    [45] Francia GT Di. Super-gain antennas and optical resolving power. Nuovo Cim, 9, 426-438(1952).

    [46] HT Liu, YB Yan, QF Tan, GF Jin. Theories for the design of diffractive superresolution elements and limits of optical superresolution. J Opt Soc Am A, 19, 2185-2193(2002).

    [47] DM Lin, PY Fan, E Hasman, ML Brongersma. Dielectric gradient metasurface optical elements. Science, 345, 298-302(2014).

    [48] YQ Wang, MB Pu, ZJ Zhang, X Li, XL Ma et al. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection. Sci Rep, 5, 17733(2015).

    [49] F Zhang, MB Pu, X Li, P Gao, XL Ma et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions. Adv Funct Mater, 27, 1704295(2017).

    [50] Mueller JP Balthasar, NA Rubin, RC Devlin, B Groever, F Capasso. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett, 118, 113901(2017).

    [51] RC Devlin, A Ambrosio, NA Rubin, JPB Mueller, F Capasso. Arbitrary spin-to–orbital angular momentum conversion of light. Science, 358, 896-901(2017).

    [52] F Zhang, YH Guo, MB Pu, LW Chen, MF Xu et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat Commun, 14, 1946(2023).

    Xiaohu Zhang, Qinmiao Chen, Dongliang Tang, Kaifeng Liu, Haimo Zhang, Lintong Shi, Mengyao He, Yongcai Guo, Shumin Xiao. Broadband high-efficiency dielectric metalenses based on quasi-continuous nanostrips[J]. Opto-Electronic Advances, 2024, 7(5): 230126
    Download Citation