• Photonics Research
  • Vol. 11, Issue 7, 1293 (2023)
Jing Zhao1、3、†, Xianfeng Wu2、†, Di Cao2、†, Mingchao Zhou2, Zhijie Shen2, and Xiaopeng Zhao2、*
Author Affiliations
  • 1Medtronic plc, Boulder, Colorado 80301, USA
  • 2Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi’an 710129, China
  • 3e-mail: zhaojing1120@gmail.com
  • show less
    DOI: 10.1364/PRJ.482542 Cite this Article Set citation alerts
    Jing Zhao, Xianfeng Wu, Di Cao, Mingchao Zhou, Zhijie Shen, Xiaopeng Zhao. Broadband omnidirectional visible spectral metamaterials[J]. Photonics Research, 2023, 11(7): 1293 Copy Citation Text show less
    References

    [1] J. B. Pendry, D. Schurig, D. R. Smith. Controlling electromagnetic fields. Science, 312, 1780-1782(2006).

    [2] R. A. Shelby, D. R. Smith, S. Schultz. Experimental verification of a negative index of refraction. Science, 292, 77-79(2001).

    [3] N. Seddon, T. Bearpark. Observation of the inverse Doppler effect. Science, 302, 1537-1540(2003).

    [4] J. B. Chen, Y. Wang, B. H. Jia, T. Geng, X. P. Li, L. Feng, W. Qian, B. M. Liang, X. X. Zhang, M. Gu, S. L. Zhuang. Observation of the inverse Doppler effect in negative-index materials at optical frequencies. Nat. Photonics, 5, 239-242(2011).

    [5] X. H. Shi, X. Lin, I. Kaminer, F. Gao, Z. J. Yang, J. D. Joannopoulos, M. Soljacic, B. L. Zhang. Superlight inverse Doppler effect. Nat. Phys., 14, 1001-1005(2018).

    [6] T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, M. Wegener. Three-dimensional invisibility cloak at optical wavelengths. Science, 328, 337-339(2010).

    [7] X. J. Ni, Z. J. Wong, M. Mrejen, Y. Wang, X. Zhang. An ultrathin invisibility skin cloak for visible light. Science, 349, 1310-1314(2015).

    [8] J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett., 76, 4773-4776(1996).

    [9] J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech., 47, 2075-2084(1999).

    [10] G. Dolling, M. Wegener, C. M. Soukoulis, S. Linden. Negative-index metamaterial at 780 nm wavelength. Opt. Lett., 32, 53-55(2007).

    [11] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang. Three-dimensional optical metamaterial with a negative refractive index. Nature, 455, 376-379(2008).

    [12] V. M. Shalaev. Optical negative-index metamaterials. Nat. Photonics, 1, 41-48(2007).

    [13] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener. Gold helix photonic metamaterial as broadband circular polarizer. Science, 325, 1513-1515(2009).

    [14] C. M. Soukoulis, M. Wegener. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics, 5, 523-530(2011).

    [15] E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, J. A. Bossard. An octave-bandwidth negligible-loss radiofrequency metamaterial. Nat. Mater., 10, 216-222(2011).

    [16] J. F. Wang, S. B. Qu, Z. Xu, Z. T. Fu, H. Ma, Y. M. Yang. A broad-band three-dimensional isotropic left-handed metamaterial. J. Phys. D, 42, 155413(2009).

    [17] F. Ling, Z. Q. Zhong, R. S. Huang, B. Zhang. A broadband tunable terahertz negative refractive index metamaterial. Sci. Rep., 8, 9843(2018).

    [18] N. Berkovitch, P. Ginzburg, M. Orenstein. Concave plasmonic particles: broad-band geometrical tunability in the near-infrared. Nano Lett., 10, 1405-1408(2010).

    [19] A. C. Atre, A. Garcia-Etxarri, H. Alaeian, J. A. Dionne. A broadband negative index metamaterial at optical frequencies. Adv. Opt. Mater., 1, 327-333(2013).

    [20] S. Bang, S. So, J. Rho. Realization of broadband negative refraction in visible range using vertically stacked hyperbolic metamaterials. Sci. Rep., 9, 14093(2019).

    [21] J. J. Rong, W. J. Ye. Topology optimization design scheme for broadband non-resonant hyperbolic elastic metamaterials. Comput. Methods Appl. Math., 344, 819-836(2019).

    [22] H. C. Chu, Z. G. Chen, Y. Lai, G. C. Ma. Wave steering by relaying interface states in a valley-hall-derived photonic superlattice. Phys. Rev. Appl., 16, 044006(2021).

    [23] Y. C. Liu, G. P. Wang, J. B. Pendry, S. Zhang. All-angle reflectionless negative refraction with ideal photonic Weyl metamaterials. Light Sci. Appl., 11, 276(2022).

    [24] J. H. Huh, K. Kim, E. Im, J. Lee, Y. Cho, S. Lee. Exploiting colloidal metamaterials for achieving unnatural optical refractions. Adv. Mater., 32, 2001806(2020).

    [25] M. Kolle, S. Lee. Progress and opportunities in soft photonics and biologically inspired optics. Adv. Mater., 30, 1702669(2018).

    [26] Y. Wang, J. Y. Yu, Y. F. Mao, J. Chen, S. Wang, H. Z. Chen, Y. Zhang, S. Y. Wang, X. J. Chen, T. Li, L. Zhou, R. M. Ma, S. N. Zhu, W. S. Cai, J. Zhu. Stable, high-performance sodium-based plasmonic devices in the near infrared. Nature, 581, 401-405(2020).

    [27] V. F. Chernow, R. C. Ng, S. Y. Peng, H. A. Atwater, J. R. Greer. Dispersion mapping in 3-dimensional core-shell photonic crystal lattices capable of negative refraction in the mid-infrared. Nano Lett., 21, 9102-9107(2021).

    [28] I. Shutsko, M. Buchmuller, M. Meudt, P. Gorrn. Light-controlled fabrication of disordered hyperuniform metasurfaces. Adv. Mater. Technol., 7, 2200086(2022).

    [29] S. Yu, C. W. Qiu, Y. D. Chong, S. Torquato, N. Park. Engineered disorder in photonics. Nat. Rev. Mater., 6, 226-243(2021).

    [30] M. F. Xu, Q. He, M. B. Pu, F. Zhang, L. Li, D. Sang, Y. H. Guo, R. Y. Zhang, X. Li, X. L. Ma, X. G. Luo. Emerging long-range order from a freeform disordered metasurface. Adv. Mater., 34, 2108709(2022).

    [31] J. Zhao, H. Chen, K. Song, L. Q. Xiang, Q. Zhao, C. H. Shang, X. N. Wang, Z. J. Shen, X. F. Wu, Y. J. Hu, X. P. Zhao. Ultralow loss visible light metamaterials assembled by metaclusters. Nanophotonics, 11, 2953-2966(2022).

    [32] B. Q. Liu, X. P. Zhao, W. R. Zhu, W. Luo, X. C. Cheng. Multiple pass-band optical left-handed metamaterials based on random dendritic cells. Adv. Funct. Mater., 18, 3523-3528(2008).

    [33] X. P. Zhao. Bottom-up fabrication methods of optical metamaterials. J. Mater. Chem., 22, 9439-9449(2012).

    [34] G. A. Vinnacombe-Willson, Y. Conti, S. J. Jonas, P. S. Weiss, A. Mihi, L. Scarabelli. Surface lattice plasmon resonances by direct in situ substrate growth of gold nanoparticles in ordered arrays. Adv. Mater., 34, 2205330(2022).

    [35] X. P. Zhao, Q. Zhao, L. Kang, J. Song, Q. H. Fu. Defect effect of split ring resonators in left-handed metamaterials. Phys. Lett. A, 346, 87-91(2005).

    [36] M. V. Gorkunov, S. A. Gredeskul, I. V. Shadrivov, Y. S. Kivshar. Effect of microscopic disorder on magnetic properties of metamaterials. Phys. Rev. E, 73, 056605(2006).

    [37] X. P. Zhao, K. Song. Review article: the weak interactive characteristic of resonance cells and broadband effect of metamaterials. AIP Adv., 4, 100701(2014).

    [38] S. L. Zhai, X. P. Zhao, S. Liu, F. L. Shen, L. L. Li, C. R. Luo. Inverse doppler effects in broadband acoustic metamaterials. Sci. Rep., 6, 32388(2016).

    [39] H. R. Barnard, G. R. Nash. Tailoring the spectral properties of layered chiral mid-infrared metamaterials. Appl. Phys. Lett., 119, 241102(2021).

    [40] H. Zhou, D. X. Li, X. D. Hui, X. J. Mu. Infrared metamaterial for surface-enhanced infrared absorption spectroscopy: pushing the frontier of ultrasensitive on-chip sensing. Int. J. Optomechatron., 15, 97-119(2021).

    [41] Q. H. Wang, B. T. Gao, M. Raglione, H. X. Wang, B. J. Li, F. Toor, M. A. Arnold, H. T. Ding. Design, fabrication, and modulation of THz bandpass metamaterials. Laser Photon. Rev., 13, 1900071(2019).

    [42] S. Lee, S. Baek, T. T. Kim, H. Cho, S. Lee, J. H. Kang, B. Min. Metamaterials for enhanced optical responses and their application to active control of terahertz waves. Adv. Mater., 32, 2000250(2020).

    Jing Zhao, Xianfeng Wu, Di Cao, Mingchao Zhou, Zhijie Shen, Xiaopeng Zhao. Broadband omnidirectional visible spectral metamaterials[J]. Photonics Research, 2023, 11(7): 1293
    Download Citation