• Journal of Semiconductors
  • Vol. 40, Issue 8, 080301 (2019)
Tomasz Dietl1、2, Alberta Bonanni3, and Hideo Ohno2、4、5、6、7、8
Author Affiliations
  • 1International Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
  • 2WPI Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
  • 3Institut für Halbleiter- und Festkörperphysik, Johannes Kepler University, Altenbergerstrasse 69, A-4040 Linz, Austria
  • 4Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
  • 5Center for Science and Innovation in Spintronics (Core Research Cluster), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
  • 6Center for Spintronics Integrated System, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
  • 7Center for Innovative Integrated Electronic Systems, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-0845, Japan
  • 8Center for Spintronics Research Network, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
  • show less
    DOI: 10.1088/1674-4926/40/8/080301 Cite this Article
    Tomasz Dietl, Alberta Bonanni, Hideo Ohno. Families of magnetic semiconductors — an overview[J]. Journal of Semiconductors, 2019, 40(8): 080301 Copy Citation Text show less
    References

    [1]

    [2] P K Baltzer, P J Wojtowicz, s M Robbins et al. Exchange interactions in ferromagnetic chromium chalcogenide spinels. Phys Rev, 151, 367(1966).

    [3]

    [4] T Kasuya, e A Yanase. Anomalous transport phenomena in Eu-chalcogenide alloys. Rev Mod Phys, 40, 684(1968).

    [5] E L Nagaev. Colossal-magnetoresistance materials: manganites and conventional ferromagnetic semiconductors. Phys Rep, 346, 387(2001).

    [6] I Žutić, A Matos-Abiague, B Scharf et al. Proximitized materials. Mater Today, 22, 85(2019).

    [7] G Xu, H M Weng, Z J Wang et al. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. Phys Rev Lett, 107, 186806(2011).

    [8] J Jungwirth, X Marti, y P Wadley et al. Antiferromagnetic spintronics. Nat Nanotech, 11, 231(2016).

    [9] H Li, S C Ruan, g Y J Zeng. Intrinsic van der Waals magnetic materials from bulk to the 2D limit: New frontiers of spintronics. Adv Mater, 0, 1900065(2019).

    [10] L Webster, n J A Yan. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3. Phys Rev B, 98, 144411(2018).

    [11] A Haury, A Wasiela, t A Arnoult et al. Observation of a ferromagnetic transition induced by two-dimensional hole gas in modulationdoped CdMnTe quantum wells. Phys Rev Lett, 79, 511(1997).

    [12] B Huang, G Clark, E Navarro-Moratalla et al. Intrinsic van der Waals magnetic materials from bulk to the 2D limit: New frontiers of spintronics. Nature, 546, 270(2019).

    [13]

    [14]

    [15]

    [16] J Spałek, A Lewicki, Z Tarnawski et al. Magnetic susceptibility of semimagnetic semiconductors: The high-temperature regime and the role of superexchange. Phys Rev B, 33, 3407(1986).

    [17] R R Gałązka. II–VI compounds — Polish perspective. Phys Stat Sol B, 243, 759(2006).

    [18] J C Andresen, r H G Katzgraber, n V Oganesyan et al. Existence of a thermodynamic spin-glass phase in the zero-concentration limit of anisotropic dipolar systems. Phys Rev X, 4, 041016(2014).

    [19]

    [20] M Król, R Mirek, K Lekenta et al. Spin polarized semimagnetic exciton-polariton condensate in magnetic field. Sci Rep, 8, 6694(2018).

    [21] C Betthausen, i P Giudici, h A Iankilevitch et al. Fractional quantum Hall effect in a dilute magnetic semiconductor. Phys Rev B, 90, 115302(2014).

    [22] R Fiederling, m M Keim, r G Reuscher et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature, 402, 787(1999).

    [23] B Leclercq, x C Rigaux, A Mycielski. Critical dynamics in Cd1–xMnxTe spin glasses. Phys Rev B, 47, 6169(1993).

    [24] J Jaroszyński, J Wróbel, G Karczewski et al. Magnetoconductance noise and irreversibilities in submicron wires of spin-glass n+-Cd1–xMnxTe. Phys Rev Lett, 80, 5635(1998).

    [25] T Dietl. Spin dynamics of a confined electron interacting with magnetic or nuclear spins: A semiclassical approach. Phys Rev B, 91, 125204(2015).

    [26] T Dietl. Hole states in wide band-gap diluted magnetic semiconductors and oxides. Phys Rev B, 77, 085208(2008).

    [27] W Pacuski, P Kossacki, D Ferrand et al. Observation of strong-coupling effects in a diluted magnetic semiconductor Ga1–xFexN. Phys Rev Lett, 100, 037204(2008).

    [28] L Besombes, Y Léger, L Maingault et al. Probing the spin state of a single magnetic ion in an individual quantum dot. Phys Rev Lett, 93, 207403(2004).

    [29] J Kobak, T Smoleński, M Goryca et al. Designing quantum dots for solotronics. Nat Commun, 5, 3191(2014).

    [30] T Dietl, o H Ohno, a F Matsukura et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 287, 1019(2000).

    [31] T Dietl, o H Ohno. Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev Mod Phys, 86, 187(2014).

    [32] H Ohno. Making nonmagnetic semiconductors ferromagnetic. Science, 281, 951(1998).

    [33] T Story, R R Gałązka, R B Frankel et al. Carrier-concentration-induced ferromagnetism in PbSnMnTe. Phys Rev Lett, 56, 777(1986).

    [34] D Ferrand, t J Cibert, n C Bourgognon et al. Carrier-induced ferromagnetic interactions in p-doped Zn1–xMnxTe epilayers. J Cryst Growth, 214, 387(2000).

    [35] K Olejník, M H S Owen, V Novák et al. Enhanced annealing, high Curie temperature and low-voltage gating in (Ga, Mn)As: A surface oxide control study. Phys Rev B, 78, 054403(2008).

    [36] M Wang, n R P Campion, h A W Rushforth et al. Achieving high Curie temperature in (Ga, Mn)As. Appl Phys Lett, 93, 132103(2008).

    [37] L Chen, X Yang, H F Yang et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga, Mn)As to 200 K via nanostructure engineering. Nano Lett, 11, 2584(2011).

    [38] Y Fukuma, a H Asada, i S Miyawaki et al. Carrierinduced ferromagnetism in Ge0.92Mn0.08Te epilayers with a Curie temperature up to 190 K. Appl Phys Lett, 93, 252502(2008).

    [39] M Hassan, z G Springholz, r R T Lechner et al. Molecular beam epitaxy of single phase GeMnTe with high ferromagnetic transition temperature. J Cryst Growth, 323, 363(2011).

    [40] K Zhao, B J Chen, G Q Zhao et al. Ferromagnetism at 230K in (Ba0.7K0.3)(Zn0.85Mn0.15)2As2 diluted magnetic semiconductor. Chin Sci Bull, 59, 2524(2014).

    [41]

    [42] A Kazakov, G Simion, Y Lyanda-Geller et al. Mesoscopic transport in electrostatically defined spin-full channels in quantum Hall ferromagnets. Phys Rev Lett, 119, 046803(2017).

    [43] T Jungwirth, J Wunderlich, V Novák et al. Spin-dependent phenomena and device concepts explored in (Ga, Mn)As. Rev Mod Phys, 86, 855(2014).

    [44] Y Ohno, g D K Young, n B Beschoten et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature, 402, 790(1999).

    [45] H Ohno, a D Chiba, a F Matsukura et al. Electric-field control of ferromagnetism. Nature, 408, 944(2000).

    [46] H Boukari, i P Kossacki, i M Bertolini et al. Light and electricfield control of ferromagnetism in magnetic quantum structures. Phys Rev Lett, 88, 207204(2002).

    [47] D Chiba, i M Sawicki, i Y Nishitani et al. Magnetization vector manipulation by electricfields. Nature, 455, 515(2008).

    [48] M Yamanouchi, D Chiba, a F Matsukura et al. Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature, 428, 539(2004).

    [49] M Yamanouchi, a D Chiba, a F Matsukura et al. Velocity of domain-wall motion induced by electrical current in a ferromagnetic semiconductor (Ga, Mn)As. Phys Rev Lett, 96, 096601(2006).

    [50] C Gould, C Rüster, T Jungwirth et al. Tunneling anisotropic magnetoresistance: A spin-valve like tunnel magnetoresistance using a single magnetic layer. Phys Rev Lett, 93, 117203(2004).

    [51] J Wunderlich, h T Jungwirth, r B Kaestner et al. Coulomb blockade anisotropic magnetoresistance effect in a (Ga, Mn)As single-electron transistor. Phys Rev Lett, 97, 077201(2006).

    [52] B A Bernevig, k O Vafek. Piezo-magnetoelectric effects in p-doped semiconductors. Phys Rev B, 72, 033203(2005).

    [53] A Chernyshov, y M Overby, X Y Liu et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spinorbit magneticfield. Nat Phys, 5, 656(2009).

    [54] S Kanai, F Matsukura, a S Ikeda et al. Spintronics: from basic research to VLSI application. AAPPS Bulletin, 25, 4(2015).

    [55] T Jungwirth, Q Niu, d A H MacDonald. Anomalous Hall effect in ferromagnetic semiconductors. Phys Rev Lett, 88, 207208(2002).

    [56] N Nagaosa, J Sinova, a S Onoda et al. Anomalous Hall effect. Rev Mod Phys, 82, 1539(2010).

    [57] H Ke, Y Y Wang, e Q K Xue. Topological materials: quantum anomalous Hall system. Annu Rev Cond Mat Phys, 9, 3293449(2018).

    [58] Y Tokura, a K Yasuda, i A Tsukazaki. Magnetic topological insulators. Nat Rev Phys, 110(2019).

    [59]

    [60] S Stefanowicz, G Kunert, s C Simserides et al. Phase diagram and critical behavior of a random ferromagnet Ga1–xMnxN. Phys Rev B, 88, 081201(2013).

    [61] A Bonanni, i M Sawicki, s T Devillers et al. Experimental probing of exchange interactions between localized spins in the dilute magnetic insulator (Ga, Mn)N. Phys Rev B, 84, 035206(2011).

    [62] G Kunert, a S Dobkowska, T Li et al. Ga1–xMnxN epitaxial films with high magnetization. Appl Phys Lett, 101, 022413(2012).

    [63] I Y Korenblit, E F Shender, y B I Shklovsky. Percolation approach to the phase transition in the very dilute ferromagnetic alloys. Phys Lett A, 46, 275(1973).

    [64] D Sztenkiel, n M Foltyn, r G P Mazur et al. Stretching magnetism with an electricfield in a nitride semiconductor. Nat Commun, 7, 13232(2016).

    [65] C Z Chang, J S Zhang, X Feng et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 340, 167(2013).

    [66] R Yu, W Zhang, H J Zhang et al. Quantized anomalous Hall effect in magnetic topological insulators. Science, 329, 61(2010).

    [67] Y B Fan, X F Kou, P Upadhyaya et al. Electric-field control of spin-orbit torque in a magnetically doped topological insulator. Nat Nanotechnol, 352(2016).

    [68] D Bulmash, u C X Liu, i X L Qi. Prediction of a Weyl semimetal in Hg1–xyCdxMnyTe. Phys Rev B, 89, 081106(2014).

    [69] T Dietl, o H Ohno, a F Matsukura. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys Rev B, 63, 195205(2001).

    [70] C Lewinert, d G Bastard. Indirect exchange interaction in extremely non-parabolic zerogap semiconductors. J Phys C, 13, 2347(1980).

    [71] M G Vergniory, M M Otrokov, D Thonig et al. Exchange interaction and its tuning in magnetic binary chalcogenides. Phys Rev B, 89, 165202(2014).

    [72] S Gupta, i S Kanai, F Matsukura et al. Magnetic and transport properties of Sb2Te3 doped with high concentration of Cr. Appl Phys Express, 10, 103001(2017).

    [73] E O Lachman, A F Young, A Richardella et al. Visualization of superparamagnetic dynamics in magnetic topological insulators. Sci Adv, 1, e1500740(2015).

    [74] M Götz, K M Fijalkowski, E Pesel et al. Precision measurement of the quantized anomalous Hall resistance at zero magneticfield. Appl Phys Lett, 112, 072102(2018).

    [75] E J Fox, n I T Rosen, Y F Yang et al. Part-per-million quantization and current-induced breakdown of the quantum anomalous Hall effect. Phys Rev B, 98, 075145(2018).

    [76] M Pohlit, S Rößler, Y Ohno et al. Evidence for ferromagnetic clusters in the colossal-magnetoresistance material EuB6. Phys Rev Lett, 120, 257201(2018).

    [77] T Dietl. Interplay between carrier localization and magnetism in diluted magnetic and ferromagnetic semiconductors. J Phys Soc Jpn, 77, 031005(2008).

    [78] M Sawicki, a D Chiba, a A Korbecka et al. Experimental probing of the interplay between ferromagnetism and localization in (Ga, Mn)As. Nat Phys, 6, 22(2010).

    [79] A Richardella, n P Roushan, k S Mack et al. Visualizing critical correlations near the metal–insulator transition in Ga1–xMnxAs. Science, 327, 665(2010).

    [80] S Kuroda, a N Nishizawa, a K Takita et al. Origin and control of high temperature ferromagnetism in semiconductors. Nat Mater, 6, 440(2007).

    [81] A Bonanni, A Navarro-Quezada, T Li et al. Controlled aggregation of magnetic ions in a semiconductor: An experimental demonstration. Phys Rev Lett, 101, 135502(2008).

    [82] A Bonanni. (Nano)characterization of semiconductor materials and structures. Semicon Sci Technol, 26, 060301(2011).

    [83] T Dietl, o K Sato, a T Fukushima et al. Spinodal nanodecomposition in semiconductors doped with transition metals. Rev Mod Phys, 87, 1311(2015).

    [84] K Sato, L Bergqvist, J Kudrnovský et al. First-principles theory of dilute magnetic semiconductors. Rev Mod Phys, 82, 1633(2010).

    [85] A Bonanni, l T Dietl. A story of high-temperature ferromagnetism in semiconductors. Rev Chem Soc, 39, 528(2009).

    [86] M Birowska, C Śliwa, J A Majewski et al. Origin of bulk uniaxial anisotropy in zinc-blende dilute magnetic semiconductors. Phys Rev Lett, 108, 237203(2012).

    [87] Y Yuan, R Hübner, M Birowska et al. Nematicity of correlated systems driven by anisotropic chemical phase separation. Phys Rev Mater, 2, 114601(2018).

    Tomasz Dietl, Alberta Bonanni, Hideo Ohno. Families of magnetic semiconductors — an overview[J]. Journal of Semiconductors, 2019, 40(8): 080301
    Download Citation